Home
Class 11
MATHS
Find the value of 1+i^2+i^4+i^6...

Find the value of `1+i^2+i^4+i^6`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of ( i^2 + i^4 + i^6 + i^7 ) / ( 1 + i^2 + i^3 ) is ( a ) 1 - i ( b ) 1 + i ( c ) 2 - i ( d ) 2 + i

1) Find the value of i^(i)

Find the value of i^4 + i^5 + i^6 + i^7

Find the value of : i^4 + i^5 + i^6 + i^7

Find the value of : i^4 + i^5 + i^6 + i^7

Find the value of (1-i)^(4)

Find the value of ( i^2 + n ) ( i^2 + n - 1 ) ( i^2 + n - 2 ) .......( i^2 + 1 )

Find the value of i^(2)+(-i)^(4)-i^(6)

Find the value of i^(2)+(-i)^(4)-i^(6) .

What is the value of 1+i^(2)+i^(4)+i^(6)+...+i^(100) where i=sqrt(-1)