Home
Class 12
MATHS
If tan^(-1)4+cot^(-1)x=(pi)/(2), then va...

If `tan^(-1)4+cot^(-1)x=(pi)/(2),` then value of `x` is

Promotional Banner

Similar Questions

Explore conceptually related problems

3tan^(-1)x+cot^(-1)x=pi

tan^(-1) x +cot^(-1)x =(pi)/(2) holds, when

If 3tan^(-1)x +cot^(-1)x=pi , then x equals to

If tan^(-1)(-sqrt(3))+cot^(-1)x=pi , then the value of x is :

If tan^(-1)x+sin^(-1)x=-(2 pi)/(3) then the value of cos^(-1)x+cot^(-1)x is equal to

prove that tan^(-1)x+cot^(-1)x=pi/2

If tan^(-1)(x^(2)+3|x|-4)+cot^(-1)(4 pi+sin^(-1)sin14)=(pi)/(2), then the value of sin^(-1)sin2x is (a)6-2 pi( b) 2 pi-6( c) pi-3 (d) 3-pi