Home
Class 12
MATHS
If [[1,0,0],[0,1,0],[0,0,1]][[x],[y],[z]...

If `[[1,0,0],[0,1,0],[0,0,1]][[x],[y],[z]]=[[1],[-1],[0]]` then value of (x+y+z)is

Promotional Banner

Similar Questions

Explore conceptually related problems

If [[1,0,0],[0,y,0],[0,0,1]][[x],[-1],[z]]=[[1],[2],[1]], then the value of x+y+z is

The solution of the equation [[1,0 ,1],[-1,1 ,0],[0 ,-1,1]][[x],[ y] ,[z]]=[[1],[ 1],[ 2]] is

If |[x,2,0],[2,x,0],[0,0,1]|+|[y,1],[0,0]|+|[0,1],[0,z]|=0 ,then find x

.If [[x-1,2,y-5],[z,0,2],[1,-1,1+a]]=[[1-x,2,-y],[2,0,2],[1,-1,1]] then find x,y,z,a

If [(1,2,-3),(0,4,5),(0,0,1)][(x),(y),(z)]=[(1),(1),(1)] , then (x, y, z) is equal to

6.If A=[[x,0,0],[0,y,0],[0,0,z]] then A^(-1) is

If [(1 ,0, 0) ,(0 ,1, 0),( 0 ,0 ,1)][(x),( y),( z)]=[(1),(-1),( 0)] , find x ,\ y\ a n d\ z .

If [(1,0,0 ), (0,-1,0), (0,0, -1)][(x),(y),( z)]=[(1),(0),(1)] , find x ,\ y\ a n d\ z .

If x, y, z are non-zero real numbers, then the inverse of matrix A=[(x,0, 0) ,(0,y,0),( 0, 0,z)] is (A) [[x^(-1),0,0],[0,y^(-1),0],[0,0,z^(-1)]] (B) xyz[[x^(-1),0,0],[0,y^(-1),0],[0,0,z^(-1)]] (C) (1)/(xyz)[[x,0,0],[0,y,0],[0,0,z]]] (D) (1)/(xyz)[[1,0,0],[0,1,0],[0,0,1]]

The solutiion of (x,y,z) the equation [(-1,0,1),(-1,1,0),(0,-1,1)][(x),(y),(z)]=[(1),(1),(2)] is (x,y,z)