Home
Class 11
MATHS
Let xa n dy be real variables satisfying...

Let `xa n dy` be real variables satisfying `x^2+y^2+8x-10 y-40=0` . Let `a=max{sqrt((x+2)^2+(y-3)^2)}` and `b=min{sqrt((x+2)^2+(y-3)^2)}` . Then `a+b=18` (b) `a+b=sqrt(2)` `a-b=4sqrt(2)` (d) `adotb=73`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let x, y be real variable satisfying x^(2) + y^(2) + 8x - 10y - 59 = 0 Let a = max {(x-3)^(2) + (y-4)^(2) and b = min {(x-3)^(2) + (y-4)^(2)) , then a + b + 2010 is ______ .

If a="max"{(x+2)^(2)+(y-3)^(2)} and b="min"{(x+2)^(2)+(y-3)^(2)} where x, y satisfying x^(2)+y^(2)+8x-10y-40=0 then :

If 2sqrt(2)x^(3)-3sqrt(3)y^(3)=(sqrt(2)x-sqrt3y)(Ax^(2)+by^(2)+Cxy) . Then the value of A^(2) + B^(2) - C^(2) is :

Let (x,y) be a variable point on the curve 4x^(2)+9y^(2)-8x-36y+15=0 then min(x^(2)-2x+y^(2)-4y+5)+max(x^(2)-2x+y^(2)-4y+5)

Let S = { (x, y |(x-3) ^(2) + (y + 42) ^(2) = 196} If A = min _((x,y) in S) sqrt (x ^(2) +y ^(2)) and B = max _((x,y) in S) sqrt (x ^(2) +y ^(2)), then |B-A| is equal to

A vertex of an equilateral triangle is at (2, 3), and th equation of the opposite side is x+y=2 , then the equaiton of the other two sides are (A) y=(2+sqrt(3)) (x-2), y-3=2sqrt(3)(x-2) (B) y-3=(2+sqrt(3) (x-2), y-3= (2-sqrt(3) (x-2) (C) y+3=(2-sqrt(3)(x-2), y-3=(2-sqrt(3) (x+2) (D) none of these