Home
Class 11
MATHS
A(1/(sqrt(2)),1/(sqrt(2))) is a point o...

`A(1/(sqrt(2)),1/(sqrt(2)))` is a point on the circle `x^2+y^2=1` and `B` is another point on the circle such that are length `A B=pi/2` units. Then, the coordinates of `B` can be `(1/(sqrt(2)),1sqrt(2))` (b) `(-1/(sqrt(2)),1sqrt(2))` `(-1/(sqrt(2)),-1/(sqrt(2)))` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

A(1/sqrt(2), 1/sqrt(2)) is a point on the circle x^2 + y^2 = 1 and B is another point on the circle such that AB = pi/2 units. Then coordinates of B can be : (A) (1/sqrt(2), - 1/sqrt(2)) (B) (-1/sqrt(2), 1/sqrt(2)) (C) (-1/sqrt(2), - 1/sqrt(2)) (D) none of these

The value of sin(1/4sin^(-1)(sqrt(63))/8) is 1/(sqrt(2)) (b) 1/(sqrt(3)) (c) 1/(2sqrt(2)) (d) 1/(3sqrt(3))

The line y=x is tangent at (0, 0) to a circle of radius 1. The centre of circle may be: (a) (1/(sqrt(2)),-1/(sqrt(2))) (b) (-1/2,1/2) (c) (1/2,-1/2) (d) (-1/(sqrt(2)),1/(sqrt(2)))

(1+sqrt(2))/(3-2sqrt(2))=A sqrt(2)+B

The value of lim_(x rarr2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2) is (1)/(8sqrt(3))(b)(1)/(4sqrt(3)) (c) 0 (d) none of these

The value of sqrt(3-2sqrt(2)) is sqrt(2)-1(b)sqrt(2)+1(c)sqrt(3)-sqrt(2)(d)sqrt(3)+sqrt(2)

The value of (lim)_(x->0)(sqrt(2)-sqrt(1+cos x))/(sin^2x) is 1/(2sqrt(2)) b. 1/(8sqrt(2)) c. 1/(4sqrt(2))\ d. -1/(4sqrt(2))

a((sqrt(a)+sqrt(b))/(2b sqrt(a)))^(-1)+b((sqrt(a)+sqrt(b))/(2a sqrt(b)))^(-1)

The image of the centre of the circle x^2 + y^2 = 2a^2 with respect to the line x + y = 1 is : (A) (sqrt(2), sqrt(2) (B) (1/sqrt(2) , sqrt(2) ) (C) (sqrt(2), 1/sqrt(2)) (D) none of these

lim_(y->oo)(sqrt(1+sqrt(1+y^(4)))-sqrt(2))/(y^(4))= (a) (1)/(4sqrt(2)) (b) (1)/(2sqrt(2)) (c) (1)/(2sqrt(2)(1+sqrt(2))) (d) does not exist