Home
Class 9
MATHS
11-8sin(x)/(8)cos(x)/(2)cos(x)/(4)cos(x)...

11-8sin(x)/(8)cos(x)/(2)cos(x)/(4)cos(x)/(8)" es equals "t_(0)

Promotional Banner

Similar Questions

Explore conceptually related problems

8*sin(x/8)*cos(x/2)*cos(x/4)*cos(x/8)=

8sin(x/8)cos(x/2)cos(x/4)cos(x/8) is equal to

8.sin(x/8). cos (x/2).cos (x/4).cos (x/8) =

intcos.(x)/(16)cos.(x)/(8)cos.(x)/(4)cos.(x)/(2)sin.(x)/(16)dx=

intcos.(x)/(16)cos.(x)/(8)cos.(x)/(4)cos.(x)/(2)sin.(x)/(16)dx=

(sin x)/(sin x)=lambda cos(x)/(8)-cos(x)/(4)cos(x)/(2), then lambda =

8 * sin ((x) / (8)) * cos ((x) / (2)) * cos ((x) / (4)) * cos ((x) / (8)) =

Lim_(x to 0){"cos"((x)/(2))cos((x)/(4))cos((x)/(8))....cos((x)/(2^(n)))}=

8*sin(x/8)*cos(x/2)*cos(x/4)*cos(x/8)= .............. A) 8 sin x B) sin x C) cos x D) 8 cos x

Evaluate: lim_(x->0)8/(x^8){1-cos((x^2)/2)-cos((x^2)/4)+cos((x^2)/2)cos((x^2)/4)}