Home
Class 11
MATHS
Tangents are drawn from the point (17, 7...

Tangents are drawn from the point (17, 7) to the circle `x^2+y^2=169`, Statement I The tangents are mutually perpendicular Statement, lls The locus of the points frorn which mutually perpendicular tangents can be drawn to the given circle is `x^2 +y^2=338` (a) Statement I is correct, Statement II is correct; Statement II is a correct explanation for Statementl (b( Statement I is correct, Statement I| is correct Statement II is not a correct explanation for Statementl (c)Statement I is correct, Statement II is incorrect (d) Statement I is incorrect, Statement II is correct

Promotional Banner

Similar Questions

Explore conceptually related problems

If A is 2 x 2 invertible matrix such that A=adjA-A^-1 Statement-I 2A^2+I=O(null matrix) Statement-II: 2|A|=1 (i) Statement-I is true, Statement-II is true; Statement-II is a correct explanation for Statement-I (2) Statement-I is true, Statement-II is true; Statement-II is not a correct explanation for Statement-I. 3) Statement-I is true, Statement-II is false. (4) Statement-I is false, Statement-II is true.

Tangents are drawn from the point P(-sqrt(3),sqrt(2)) to an ellipse 4x^(2)+y^(2)=4 Statement-1: The tangents are mutually perpendicular.and Statement-2: The locus of the points can be drawn togiven ellipse is x^(2)+y^(2)=5

Statement 1: the sum of first 30 terms of the sequence 1,2,4,7,11,16,22.... is 4520. Statement 2: If the successive differences of the terms of a sequence form an A.P. then general term of sequence is of the form an^2+bn+c. (i) Statement I is correct , Statement II is correct , Statement II is correct explanation of Statement I (ii) Statement I is correct , Statement II is correct , Statement II is not correct explanation of Statement I (iii) Statement I is True , Statement II if False (iv) Statement I is False , Statement II if True

Let F(x) be an indefinite integral of sin2x . Statement- 1: The function F(x) satisfies F(x+pi)=F(x) for all real x . Statement- 2: sin2(x+pi)=sin2x for all real x . (A) Statement I is true, Statement II is also true, Statement II is the correct explanation of Statement I. (B)Statement I is true, Statement II is also true, Statement II is not the correct explanation of Statement I. (C) Statement I is true, Statement II is false. (D) Statement I is false, Statement II is ture.

Let F(x) be an indefinite integral of sin^(2)x Statement I The function F(x) satisfies F(x+pi)=F(x) for all real x. Because Statement II sin^(2)(x+pi)=sin^(2)x, for all real x. (A) Statement I is true, Statement II is also true, Statement II is the correct explanation of Statement I. (B)Statement I is true, Statement II is also true, Statement II is not the correct explanation of Statement I. (C) Statement I is true, Statement II is false. (D) Statement I is false, Statement II is ture.

Statement-I int_0^9[sqrtx]dx=13, Statement-II int_0^(n^2) [sqrt x]dx=(n(n-1)(4n+1))/6, n in N (where [.] denotes greatest integer function) (1) Statement-I is true, Statement-II is true Statement-II is a correct explanation for Statement-I (2) Statement-I is true, Statement-II is true Statement-II is not a correct explanation for Statement-I, (3) Statement-I is true, Statement-II is false. (4) Statment-I is false, Statement-II is true.

Statement 1: (lim)_(x->0)sin^(-1){x}\ does not exist (where {.} denotes fractional part function). Statement 2: {x} is discontinuous at x=0 (a)Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1 (b)Statement 1 is true, Statement 2 is true; Statement 2 not a correct explanation for statement 1. (c)Statement 1 is true, statement 2 is false (d)Statement 1 is false, statement 2 is true