Home
Class 12
MATHS
Let vec a , vec ba n d vec c be unit ve...

Let ` vec a , vec ba n d vec c` be unit vectors, such that ` vec a+ vec b+ vec c= vec x , vec adot vec x=1, vec bdot vec x=3/2,| vec x|=2.` Then find the angel between `cc` and `xxdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a , vec b , vec c be the three unit vectors such that vec a+5 vec b+3 vec c= vec0 , then vec a. ( vec bxx vec c) is equal to

If vec a,vec b,vec c are unit vectors such that vec a+vec b+vec c=vec 0 find the value of vec a+vec b+vec bdot c+vec *vec a

If vec a,vec b, and vec c are unit vectors such that vec a+vec b+vec c=0, then find the value of vec a*vec b+vec b*vec c+vec c*vec a

If vec a,vec b,vec c are unit vectors such that vec a+vec b+vec c=vec 0, then write the value of vec a*vec b+vec b*vec c+vec c*vec a

Let vec a and vec b be two unit vectors such that |vec a+vec b|=sqrt(3) if vec c=vec a+2vec b+3(vec aXvec b) then 2|vec c| is equal to

If vec a,vec b and vec c be three vectors such that vec a+vec b+vec c=0,|vec a|=1,|vec c|=3,|vec b|=2, Then find the value of vec a.vec b+vec b.vec c+vec c.vec a

If vec a\ a n d\ vec b are unit vectors then write the value of | vec axx vec b|^2+( vec adot vec b)^2dot

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

If vec(a) , vec(b) and vec(c ) be three vectors such that vec(a) + vec(b) + vec(c )=0 and |vec(a)|=3, |vec(b)|=5,|vec(C )|=7 , find the angle between vec(a) and vec(b) .

If vec a,vec b,vec c are three vectors such that vec avec b=vec adot c then show that vec a=0 or ,vec b=c or vec a perp(vec b-vec c)