Home
Class 12
MATHS
If f(x) is the primitive of (sinx^(1/3...

If `f(x)` is the primitive of `(sinx^(1/3)log(1+3x))/((tan^(- 1)sqrt(x))^2(e^(x^(1/3))-1))(x!=0)` then `lim_(x->0) f'(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sin^(3)(sqrt(x))log(1+3x))/((tan^(-1)sqrt(x))^(2)(e^(5sqrt(x))-1)x)=

lim_(x->0)(sin^3(sqrtx)log(1+3x))/((tan^-1 sqrtx)^2(e^(5sqrtx)-1)x)=

The velue of lim_(x->0)(sin(3sqrtx)ln(1+3x))/((tan^(- 1)sqrt(x))^2(e^(5(3sqrtx))-1)) is equal to

The velue of lim_(x rarr0)(sin(3sqrt(x))ln(1+3x))/((tan^(-1)sqrt(x))^(2)(e^(5(3sqrt(x)))-1)) is equal to

Let f(x)=(sqrt(1+sinx)-sqrt(1-sinx))/(tanx) , x ne 0 Then lim_(x to 0) f(x) is equal to

lim_(xto0)(log(1+3x^(2)))/(x(e^(5x)-1)) =

Find the range of f(X) =t tan^(-1)x-(1)/(2)log_(e)x in (1)/(sqrt(3)),(sqrt(3))

Find the range of f(X) = tan^(-1)x-(1)/(2)log_(e)x in (1)/(sqrt(3)),(sqrt(3))