Home
Class 10
MATHS
Ii DeltaPQR, PDbotQR such that D lies on...

Ii `DeltaPQR`, PD`bot`QR such that D lies on QR, if PQ=a,PR=b,QD=c and DR=d, then prove that (a+b)(a-b)=(c+d)(c-d).

Text Solution

Verified by Experts

Given: In `trianglePQR, PD bot QR, so angle1= angle2`
PQ=a,PR=b,QD=c and DR=d
To prove: (a+b) (a-b) = (c+d) (c-d)
Proof : in right angle `trianglePDQ`
`PD^(2)= PQ^(2)-QD^(2)` (by pythagoras theorem)
` Rightarrow " " PD^(2)=a^(2) -c^(2)` ...(1)
similarlym in right angled `trianglePDR`
`PD^(2)= PR^(2)-DR^(2)` ( by pythagoras theorem) (by pythagoras theorem )
`PD^(2) = b^(2)-d ^(2)`
From (1) and (2) ,we have
`a^(2)-c^(2)= b^(2)-d^(2)`
`a^(2)-b^(2) = c^(2) -d^(2)`
(a-b) (a+b) = (c-d) (c+d) Hence proved.
Promotional Banner

Topper's Solved these Questions

  • TRIANGLES

    NAGEEN PRAKASHAN|Exercise Exercise 6a|23 Videos
  • TRIANGLES

    NAGEEN PRAKASHAN|Exercise Eercise 6b|1 Videos
  • TRIANGLES

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Questions|4 Videos
  • STATISTICS

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|5 Videos
  • VOLUME AND SURFACE AREA OF SOLIDS

    NAGEEN PRAKASHAN|Exercise Revisions Exercise Long Answer Questions|5 Videos

Similar Questions

Explore conceptually related problems

If a

If a,b,c,d are in H.P.then prove that a+d>b+c

If a, b, c, d are in G.P., then prove that: (b-c)^(2)+(c-a)^(2)+(d-b)^(2)=(a-d)^(2)

If a,b,c,d are in GP then prove that a+b,b+c,c+d are in GP.

If a, b, c, d are in GP, prove that (b-c)^(2)+(c-a)^(2)+(d-b)^(2)=(a-d)^(2) .

In Fig. 5.10, if A C=B D , then prove that A B=C D .

If a, b, c and d are four coplanr points, then prove that [a b c]=[b c d]+[a b d]+[c a d] .

If A={a,b},B={c,d},C={d,e} then {(a,c),(a,d)(a,e),(b,c),(b,d),(b,e)}=