Home
Class 12
MATHS
If vec a , vec b ,a n d vec c be three ...

If ` vec a , vec b ,a n d vec c` be three non-coplanar vector and `a^(prime),b^(prime)a n dc '` constitute the reciprocal system of vectors, then prove that ` vec r=( vec rdot vec a ') vec a+( vec rdot vec b^') vec b+( vec rdot vec c^') vec c` ` vec r=( vec rdot vec a ') vec a '+( vec rdot vec b^') vec b '+( vec rdot vec c ') vec c '`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

If vec a , vec b , vec c are three given non-coplanar vectors and any arbitrary vector vec r in space, where Delta1=| vec rdot vec a vec bdot vec a vec cdot vec a vec rdot vec b vec bdot vec b vec cdot vec b vec rdot vec c vec bdot vec c vec cdot vec c| , Delta2=| vec adot vec a vec rdot vec a vec cdot vec a vec adot vec b vec rdot vec b vec cdot vec b vec adot vec c vec rdot vec c vec cdot vec c| Delta3=| vec adot vec a vec bdot vec a vec rdot vec a vec adot vec b vec bdot vec b vec rdot vec b vec adot vec c vec bdot vec c vec rdot vec c| , Delta =| vec adot vec a vec bdot vec a vec cdot vec a vec adot vec b vec bdot vec b vec cdot vec b vec adot vec c vec bdot vec c vec cdot vec c| , then prove that vec r=(Delta1)/ Deltavec a+(Delta2)/Delta vec b+(Delta3)/Delta vec c .

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

Let vec a,vec b, and vec c be non-coplanar vectors and let the equation vec a',vec b',vec c' ,are reciprocal system of vector vec a,vec b,vec c, then prove that vec a xxvec a'+vec b xxvec b'+vec c xxvec c ,is a null vector.

Let vec a , vec ba n d vec c be three non-coplanar vectors and vec p , vec qa n d vec r the vectors defined by the relation vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c])a n d vec r=( vec axx vec b)/([ vec a vec b vec c])dot Then the value of the expression ( vec a+ vec b)dot vec p+( vec b+ vec c)dot vec q+( vec c+ vec a)dot vec r is a. 0 b. 1 c. 2 d. 3

If vec a, vec b, vec c are unit vectors such that vec a + vec b + vec c = vec 0 find the value of vec a * vec b + vec b * vec c + vec c * vec avec a * vec b + vec b * vec c + vec c * vec a

If vec a, vec b and vec c are non coplaner vectors such that vec b xxvec c = vec a, vec c xxvec a = vec b and vec a xxvec b = vec c then | vec a + vec b + vec c | =

If the vectors vec a, vec b, vec c are coplanar, then the value of | (vec a, vec b, vec c), (vec a * vec a, vec a * vec b, vec a * vec c), (vec b * vec a, vec b * vec b, vecb * vec c) | =

Let vec a,vec b, and vec c and vec a',vec b',vec c ,are reciprocal system of vectors,then prove that vec a'xxvec b'+vec b xxvec c'+vec c'xxvec a'=(vec a+vec b+vec c)/([vec avec bvec c])

If vec a is a non-zero vector and vec a * vec b = vec a * vec c, vec a xxvec b = vec a xxvec c, then