Home
Class 12
MATHS
If vec axx vec b= vec bxx vec c!=0,w h ...

If ` vec axx vec b= vec bxx vec c!=0,w h e r e vec a , vec b ,a n d vec c` are coplanar vectors, then for some scalar `k` prove that ` vec a+ vec c=k vec bdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a xxvec b=vec b xxvec c!=0, where vec a,vec b and vec c are coplanar vectors,then for some scalar k

The vectors vec a,vec b,vec c,vec d are coplanar then

If vec a, vec b, vec c are coplanar vectors, then | vec a, vec b, vec cvec b, vec c, vec avec b, vec a, vec b] | = vec a

(vec a xxvec b)xx(vec b xxvec c)=vec b, where vec a,vec b, and vec c are nonzero vectors,then vec a,vec b, and vec c can be coplanar vec a,vec b, and vec c must be coplanar vec a,vec b, and vec c cannot be coplanar none of these

Solve the following equation for the vector vec p; vec p xx vec a+(vec p. vec b)vec c=vec b xx vec c where vec a ,vec b,vec c are non zero non coplanar vectors and vec a is neither perpendicular to vec b non to vec c hence show that (vec p xx vec a+([vec a vec b vec c])/(vec a*vec c) vec c) is perpendicular vec b-vec c.

Vectors vec Aa n d vec B satisfying the vector equation vec A+ vec B= vec a , vec Axx vec B= vec ba n d vec A*vec a=1,w h e r e vec aa n d vec b are given vectors, are a. vec A=(( vec axx vec b)- vec a)/(a^2) b. vec B=(( vec bxx vec a)+ vec a(a^2-1))/(a^2) c. vec A=(( vec axx vec b)+ vec a)/(a^2) d. vec B=(( vec bxx vec a)- vec a(a^2-1))/(a^2)

Given four vectors vec a, vec b, vec c, vec d such that vec a + vec b + vec c = alphavec d, vec b + vec c + vec d = betavec a and that vec a, vec a, vec b, vec c are non-coplanar, then the sum vec a + vec b + vec c + vec d is

36. If vec a, vec b, vec c and vec d are unit vectors such that (vec a xx vec b) .vec c xx vec d = 1 and vec a.vec c = 1/2 then a) vec a, vec b and vec c are non-coplanar b) vec b, vec c, vec d are non -coplanar c) vec b, vecd are non parallel d) vec a, vec d are parallel and vec b, vec c are parallel

Let vec a xx vec b,vec b xx vec c,vec c xx vec a are non coplanar vectors and [[vec a,vec b,vec c]]=1.vec r is a vector such that vec r.vec a=vec r.vec b=vec r.vec c=2, then area of triangle whose vertices are vec a,vec b and vec c is (A) |vecr|/2 (2) 2|vecr| (C) |vecr|/4 (D) 4|vecr|

Let vec a* vec b=0,w h e r e vec aa n d vec b are unit vectors and the unit vector vec c is inclined at an angle theta to both vec aa n d vec bdot If vec c=m vec a+n vec b+p( vec axx vec b),(m ,n , p in R), then a.pi/4lt=thetalt=pi/4 b. pi/4lt=thetalt=(3pi)/4 c. 0lt=thetalt=pi/4 d. 0lt=thetalt=(3pi)/4