Home
Class 12
MATHS
f(x)={[(x-a)sin((1)/(x-a)),x!=a" at "x=a...

f(x)={[(x-a)sin((1)/(x-a)),x!=a" at "x=a],[0quad ,x=a]

Promotional Banner

Similar Questions

Explore conceptually related problems

Test for continuity of the following function at x=a:f(x)={(x- a) sin((1)/(x-a), where x!=a(x-a)0, when x=a

If f(x)=sin((1)/(x)), then at x=0

Discuss the continuity of f(x)={x^(2)sin((1)/(x)),quad x!=0quad 0,quad x= at x=0

Examine for continuity, each of the following functions: f(x) = {:{((x-a) sin (1/(x-a)), x ne a), (0, x = a):} at x = a

Let f,g:R rarr R be two function diffinite f(x)={x sin((1)/(x)),x!=0; and 0,x=0 and g(x)=xf(x)

The function f(x)=(x-a)"sin"(1)/(x-a) for x!=a and f(a)=0 is :

Show that the function f(x)={x^(m)sin((1)/(x)),quad x!=00,quad x= is differentiable at x=0, if m>1

If f(x)=x sin((1)/(x)),x!=0 and f(x)=0,x=0 then show that f'(0) does not exist

The least integral value of p for which f'(x) is everywhere continuous where f(x){x^(p)sin((1)/(x))+x|x|,x!=0 and 0,x=0 is

f(x) = (x - [x]) sin ((1)/(X)) , at x = 0 , f is