Home
Class 12
MATHS
Prove that [ vec a+ vec b vec b+ vec c v...

Prove that `[ vec a+ vec b vec b+ vec c vec c+ vec a]=2[ vec a vec b vec c]dot`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a,vec b and vec c are three non-zero vectors,prove that [vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

Prove that (vec a-vec b)(vec b-vec c)xx(vec c-vec a)=0

Prove that [vec a,vec b,vec c+vec d]=[vec a,vec b,vec c]+[vec a,vec b,vec d]

If vec a, vec b, vec c are unit vectors such that vec a + vec b + vec c = vec 0 find the value of vec a * vec b + vec b * vec c + vec c * vec avec a * vec b + vec b * vec c + vec c * vec a

Prove that,for any three vectors vec a,vec b,vec c[vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

If | vec a | = 5, | vec b | = 4 and | vec c | = 3 thus what will be the value of | vec a * vec b + vec b * vec c + vec c * vec a | given vec a + vec b + vec c = 0

Let vec a,vec b, and vec c and vec a',vec b',vec c ,are reciprocal system of vectors,then prove that vec a'xxvec b'+vec b xxvec c'+vec c'xxvec a'=(vec a+vec b+vec c)/([vec avec bvec c])

The length of the perpendicular form the origin to the plane passing through the point a and containing the line vec r= vec b+lambda vec c is a. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c+ vec cxx vec a|) b. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c|) c. ([ vec a vec b vec c])/(| vec bxx vec c+ vec cxx vec a|) d. ([ vec a vec b vec c])/(| vec cxx vec a+ vec axx vec b|)

Given vec a=x hat i+y hat j+2 hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j ; vec a_|_ vec b , vec adot vec c=4. Then [ vec a vec b vec c]^2=| vec a| b. [ vec a vec b vec c]^=| vec a| c. [ vec a vec b vec c]^=0 d. [ vec a vec b vec c]^=| vec a|^2

Let vec a, vec b, vec b, vec b are three vectors such that vec a * vec a = vec b * vec b = vec c * vec c = 3 and | vec a-vec b | ^ (2) + | vec b-vec c | ^ (2) + | vec c-vec a | ^ (2) = 27 then