Home
Class 12
MATHS
Let vec a , vec b , vec c be three uni...

Let ` vec a , vec b , vec c` be three unit vectors and ` vec a . vec b= vec a . vec c=0.` If the angel between ` vec b` and `vec c` is `pi/3` , then find the value of `|[ vec a vec b vec c]|` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a,vec b,vec c are unit vectors such that vec a*vec b=0=vec a*vec c and the angel between vec b and vec c is (pi)/(3), then find the value of |vec a xxvec b-vec a xxvec c|

If vec a,vec b,vec c are unit vectors such that vec a*vec b=0=vec a*vec c and the angle between vec b and vec c is pi/3, then the value of |vec a xxvec b-vec a xxvec c| is 1/2 b.1 c.2 d.none of these

Let vec a,vec b,vec c be unit vectors such that vec a*vec b=vec a*vec c=0 and the angle between vec b and vec c is (pi)/(6), that vec a=+-2(vec b xxvec c)

Let vec a , vec b , vec c be the three unit vectors such that vec a+5 vec b+3 vec c= vec0 , then vec a. ( vec bxx vec c) is equal to

If vec a,vec b and vec c are three unit vectors such that vec a*vec b=vec a*vec c=0 and angle between vec b and vec c is (pi)/(6) prove that vec a=+-2(vec b xxvec c)

If vec a,vec b,vec c are three vectors such that vec a=vec b+vec c and the angle between vec b and vec c is (pi)/(2), then

If vec a + vec b = vec c and | vec a | = | vec b | = | vec c | find the angle between vec a and vec b

If three unit vectors vec a,vec b, and vec c satisfy vec a+vec b+vec c=0, then find the angle between vec a and vec b

Let vec a , vec b , vec c are three vectors , such that vec a + vec b + vec c = vec 0 .If , |vec a|=3 , |vec b|=4 and | vec c|=5 , then the value of, |vec a+vec b|^(2) + |vec b-vec c|^(2) + |vec c+vec a|^(2) , equal to :

If |vec a|+|vec b|=|vec c| and vec a+vec b=vec c, then find the angle between vec a and vec b