Home
Class 11
MATHS
" (vii) "sqrt(3)+(sqrt(3)-i2)-(3-i2)...

" (vii) "sqrt(3)+(sqrt(3)-i2)-(3-i2)

Promotional Banner

Similar Questions

Explore conceptually related problems

In the following, perform the indicated operations and write the result in the form x+iy: sqrt(3)+(sqrt(3)-2i)-(3-2i)

Simplify the following expressions: (i) (3+sqrt(3))\ (3-sqrt(3)) (ii) (sqrt(5)-\ sqrt(2)\ )(sqrt(5)+sqrt(2))

(-sqrt3 + sqrt(-2))(2sqrt3-i)

Express the result in the form x+iy, where x,y are real number i=sqrt(-1) : (i) (-5+3i)(8-7i) (ii) (-sqrt(3)+sqrt(-2))(2sqrt(3)-i) (iii) (sqrt(2)-sqrt(3)i)^(2)

Express each of the following in the form a+i b :(-sqrt(3)+\ sqrt(-2))(2sqrt(3)-i)

In the following perform the indicated operations and write the result in the form x + iy: sqrt3+(sqrt3-2i)- (3-2i) .

Show that (i)" "{((3+2i))/((2-3i))+((3-2i))/((2+3i))} is purely real, (ii)" "{((sqrt(7)+i sqrt(3)))/((sqrt(7)-i sqrt(3)))+((sqrt(7)- i sqrt(3)))/((sqrt(7) + i sqrt(3)))} is purely real.

values (s)(-i)^((1)/(3)) is/are (sqrt(3)-i)/(2) b.(sqrt(3)+i)/(2)c .(-sqrt(3)-i)/(2)d.(-sqrt(3)+i)/(2)

(-sqrt3 + sqrt(-2))(2sqrt3 - i)

(sqrt(3+4i)+sqrt(3-4i))/(sqrt(3+4i)-sqrt(3-4i))=