Home
Class 12
MATHS
Prove that [ vec l vec m vec n][ vec a v...

Prove that `[ vec l vec m vec n][ vec a vec b vec c]=| vec ldot vec a vec ldot vec b vec ldot vec c vec mdot vec a vec mdot vec a vec mdot vec a vec ndot vec a vec ndot vec a vec ndot vec a|` .

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that if [ vec l vec m vec n] are three non-coplanar vectors, then [ vec l vec m vec n]( vec axx vec b)=| vec ldot vec a vec ldot vec b vec l vec mdot vec a vec mdot vec b vec m vec ndot vec a vec ndot vec b vec n| .

Prove that [vec a,vec b,vec c+vec d]=[vec a,vec b,vec c]+[vec a,vec b,vec d]

[vec a, vec b + vec c, vec d] = [vec a, vec b, vec d] + [vec a, vec c, vec d]

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n vec adot vec b+ vec bdot vec c+ vec cdot vec a=0 b. vec axx vec b= vec bxx vec c= vec cxx vec a c. vec adot vec b= vec bdot vec c= vec cdot vec a d. vec axx vec b+ vec bxx vec c+ vec cxx vec a=0

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

The vectors vec a and vec b are not perpendicular and vec c and vec d are two vectors satisfying : vec b""xxvec c""= vec b"" xxvec d"",vec a * vec d=0 . Then the vector vec d is equal to : (1) vec b-(( vec bdot vec c)/( vec adot vec d)) vec c (2) vec c+(( vec adot vec c)/( vec adot vec b)) vec b (3) vec b+(( vec bdot vec c)/( vec adot vec b)) vec c (4) vec c-(( vec adot vec c)/( vec adot vec b)) vec b

Statement 1: vec a , vec b ,a n d vec c are three mutually perpendicular unit vectors and vec d is a vector such that vec a , vec b , vec ca n d vec d are non-coplanar. If [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]=1,t h e n vec d= vec a+ vec b+ vec c Statement 2: [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a] =>vec d is equally inclined to veca,vecb,vecc.

[vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]