Home
Class 12
MATHS
The velue of lim(x->0)(sin(3sqrtx)ln(1+...

The velue of `lim_(x->0)(sin(3sqrtx)ln(1+3x))/((tan^(- 1)sqrt(x))^2(e^(5(3sqrtx))-1))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The velue of lim_(x rarr0)(sin(3sqrt(x))ln(1+3x))/((tan^(-1)sqrt(x))^(2)(e^(5(3sqrt(x)))-1)) is equal to

lim_(x->0)(sin^3(sqrtx)log(1+3x))/((tan^-1 sqrtx)^2(e^(5sqrtx)-1)x)=

lim_(x rarr0)(sin^(3)(sqrt(x))log(1+3x))/((tan^(-1)sqrt(x))^(2)(e^(5sqrt(x))-1)x)=

The value of lim_(x rarr 0) ((tanx^((1)/(5)))/((tan^(-1)sqrtx)^(2))(log(1+5x))/(e^(3root5x)-1)) is

lim_(x->1)sqrt(x+8)/sqrtx

The value of (lim_(x rarr 0) (tanx^((1)/(5)))/((tan^(-1)sqrtx)^(2))(log(1+5x))/(e^(3root5x)-1) is

The value of (lim_(x rarr 0) (tanx^((1)/(5)))/((tan^(-1)sqrtx)^(2))(log(1+5x))/(e^(3root5x)-1) is

The value of (lim_(x rarr 0) (tanx^((1)/(5)))/((tan^(-1)sqrtx)^(2))(log(1+5x))/(e^(3root5x)-1) is

(sin^(-1)sqrtx-cos^(-1)sqrtx)/(sin^(-1)sqrt(x)+cos^(-1)sqrtx)