Home
Class 12
MATHS
If vec a , vec b ,a n d vec c are non-c...

If ` vec a , vec b ,a n d vec c` are non-coplanar unit vectors such that ` vec axx( vec bxx vec c)=( vec b+ vec c)/(sqrt(2)), vec ba n d vec c` are non-parallel, then prove that the angel between ` vec aa n d vec bi s3pi//4.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a,vec b and vec c are non-coplanar unit vectors such that vec a xx(vec b xxvec c)=(vec b+vec c)/(sqrt(2)), then the angle between vec a and vec b is a.3 pi/4b. pi/4 c.pi/2d. pi

If vec a,vec b,vec c are three unit vectors such that vec a xx(vec b xxvec c)=(1)/(2)(vec b+vec c). If the vectors vec b and vec c are non-parallel,then the angle between vec a and vec b is

If vec a,vcb and vec c are non-coplanar vectors, then show that vec a+vec b,vec b+vec c and vec c+vec a are also non-coplanar

If vec a,vec c,vec d are non-coplanar vectors,then vec d*{vec a xx[vec b xx(vec c xxvec d)]} is equal to

If vec a,vec b,vec c are 3 unit vectors such that vec a xx(vec b xxvec c)=(vec b)/(2) then (vec b and vec c being non parallel).(a)angle between vec a&vec b is (pi)/(3) (b)angle between vec a and vec c is (pi)/(3)( c)angle between vec a and vec b is (pi)/(2) (d)angle between vec a and vec c is (pi)/(2)

If vec a, vec b and vec c are non coplaner vectors such that vec b xxvec c = vec a, vec c xxvec a = vec b and vec a xxvec b = vec c then | vec a + vec b + vec c | =

If vec a,vec b,vec c are three non coplanar vectors such that vec a.vec a*vec a=vec dvec b=vec d*vec c=0 then show that vec d is the null vector.

If vec a , vec b , vec c are three non coplanar vectors such that vec ddot vec a= vec ddot vec b= vec ddot vec c=0, then show that d is the null vector.

If vec a , vec b , vec c are three vectors such that | vec a+ vec b+ vec c|=1, vec c=lambda( vec axx vec b)a n d| vec a|=1/(sqrt(2)),| vec b|=1/(sqrt(3)),| vec c|=1/(sqrt(6)) , find the angle between vec aa n d vec bdot

If vec a,vec b and vec c are three non-zero vectors,prove that [vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]