Home
Class 12
MATHS
" If "y=sec^(-1)((x+1)/(x-1))+sin^(-1)((...

" If "y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1))," then "(dy)/(dx)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Ify=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)), then (dy)/(dx)

I fy=sec^(- 1)((x+1)/(x-1))+sin^(- 1)((x-1)/(x+1)),t h e n(dy)/(dx)

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)) , then find (dy)/(dx) .

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)),x>0 Find (dy)/(dx).

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)),x > 0. Find (dy)/(dx)dot

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)),x > 0. Find (dy)/(dx)dot

If y=sin^(-1)x+cos^(-1)x " then " (dy)/(dx) is

y = sec^(- 1)((x+1)/(x-1))+sin^(- 1)((x-1)/(x+1)) , x > 0. Find dy/dx

y = sec^(- 1)((x+1)/(x-1))+sin^(- 1)((x-1)/(x+1)) , x > 0. Find dy/dx