Home
Class 12
MATHS
If vec b is not perpendicular to vec c...

If ` vec b` is not perpendicular to ` vec c ,` then find the vector ` vec r` satisfying the equyation ` vec rxx vec b= vec axx vec ba n d vec rdot vec c=0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a and vec b be two non-zero perpendicular vectors.A vecrtor vec r satisfying the equation vec r xxvec b=vec a can be vec b-(vec a xxvec b)/(|vec b|^(2)) b.2vec b-(vec a xxvec b)/(|vec b|^(2)) c.|vec a|vec b-(vec a xxvec b)/(|vec b|^(2))d|vec b|vec b-(vec a xxvec b)/(|vec b|^(2))

If vec a_|_ vec b , then vector vec v in terms of vec aa n d vec b satisfying the equation s vec vdot vec a=0a n d vec vdot vec b=1a n d[ vec v vec a vec b]=1 is vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) b. vec b/(| vec b|^)+( vec axx vec b)/(| vec axx vec b|^2) c. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^) d. none of these

The vectors vec a and vec b are not perpendicular and vec c and vec d are two vectors satisfying : vec b""xxvec c""= vec b"" xxvec d"",vec a * vec d=0 . Then the vector vec d is equal to : (1) vec b-(( vec bdot vec c)/( vec adot vec d)) vec c (2) vec c+(( vec adot vec c)/( vec adot vec b)) vec b (3) vec b+(( vec bdot vec c)/( vec adot vec b)) vec c (4) vec c-(( vec adot vec c)/( vec adot vec b)) vec b

Let vec a=2 hat i+ hat k , vec b= hat i+ hat j+ hat ka n d vec c=4 hat i-3 hat j+7 hat k be three vectors. Find vector vec r which satisfies vec rxx vec b= vec cxx vec ba n d vec rdot vec a=0.

Let vec a , vec ba n d vec c be three non-coplanar vectors and vec p , vec qa n d vec r the vectors defined by the relation vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c])a n d vec r=( vec axx vec b)/([ vec a vec b vec c])dot Then the value of the expression ( vec a+ vec b)dot vec p+( vec b+ vec c)dot vec q+( vec c+ vec a)dot vec r is a. 0 b. 1 c. 2 d. 3

vec a and vec b are mutually perpendicular unit vectors. vec r is a vector satisfying vec r * vec a = 0, vec r * vec b = 1 and [vec r vec a vec b] = 1, then vec r is (A) case a + (case a × case b) (B) case b + (case a × case b) (C) vec a + vec b × (vec a × vec b) (D) case a - case b + (case a × case b)

Solve the following equation for the vector vec p; vec p xx vec a+(vec p. vec b)vec c=vec b xx vec c where vec a ,vec b,vec c are non zero non coplanar vectors and vec a is neither perpendicular to vec b non to vec c hence show that (vec p xx vec a+([vec a vec b vec c])/(vec a*vec c) vec c) is perpendicular vec b-vec c.

If vec a, vec b and vec c are perpendicular to vec b + vec c, vec c + vec a, vec a + vec b respectively and if | vec a + vec b | = 6, | vec b + vec c | = 8 and | vec c + vec a | = 10 then find the value of vec a + vec b + vec c

Let vec(a), vec(b), vec(c) be three vectors mutually perpendicular to each other and have same magnitude. If a vector vec(r) satisfies vec(a) xx {(vec(r) - vec(b)) xx vec(a)} + vec(b) xx {(vec(r) - vec(c)) xx vec(b)} + vec(c) xx {(vec(r) - vec(a)) xx vec(c)} = vec(0) , then vec(r) is equal to :

Let vec a,vec b and vec c are vectors of magnitude 3,4,5 respectively.If vec a is perpendicular to vec b+vec c,vec b is perpendicular to vec c+vec a and vec c is perpendicular to vec a+vec b then find the magnitude of vec a+vec b+vec c