Home
Class 12
MATHS
Prove that 1/(1+p+q^(- 1))+1/(1+q+r^(- 1...

Prove that `1/(1+p+q^(- 1))+1/(1+q+r^(- 1))+1/(1+r+p^(- 1))=1,if pqr=1` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If pqr=1 show that (1)/(1+p+q^(-1))+(1)/(1+q+r^(-1))+(1)/(1+r+p^(-1))=1

The value of 1/(p + q^(-1) + 1) + 1/(q + r^(-1) + 1) + 1/(1 + r + p^(-1)) given that pqr = 1 is :

If pqr = 1, then what is value of the expression (1)/(1+p+q^(-1)) +(1)/(1+q+r^(-1)) +(1)/(1+r+p^(-1)) ?

Prove tan ^ (- 1) ((1) / (p + q)) + tan ^ (- 1) ((a) / (p ^ (2) + q + 1)) = cos ^ (- 1) p

Prove that cot^(-1)((pq+1)/(p-q))+cot^(-1)((qr+1)/(q-r)) +cot^(-1)((rp+1)/(r-p))=0 .

If p > q > 0a n dp r < -1 < q r , then find the value of tan^(-1)((p-q)/(1+p q))+tan^(-1)((q-r)/(1+q r))+tan^(-1)((r-p)/(1+r p)) .

If pgtqgt0 and prlt-1ltqr then prove that tan^(-1)((p-q)/(1+pq))+tan^(-1)((q-r)/(1+qr))+tan^(-1)((r-p)/(1+rp))=pi