Home
Class 12
MATHS
Prove that if [ vec l vec m vec n] are t...

Prove that if `[ vec l vec m vec n]` are three non-coplanar vectors, then `[ vec l vec m vec n]( vec axx vec b)=| vec ldot vec a vec ldot vec b vec l vec mdot vec a vec mdot vec b vec m vec ndot vec a vec ndot vec b vec n|` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that [ vec l vec m vec n][ vec a vec b vec c]=| vec ldot vec a vec ldot vec b vec ldot vec c vec mdot vec a vec mdot vec a vec mdot vec a vec ndot vec a vec ndot vec a vec ndot vec a| .

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

Statement 1: vec a , vec b ,a n d vec c are three mutually perpendicular unit vectors and vec d is a vector such that vec a , vec b , vec ca n d vec d are non-coplanar. If [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]=1,t h e n vec d= vec a+ vec b+ vec c Statement 2: [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a] =>vec d is equally inclined to veca,vecb,vecc.

If vec a, vec b, vec c are coplanar vectors, then | vec a, vec b, vec cvec b, vec c, vec avec b, vec a, vec b] | = vec a

If vec a, vec b , vec c are three non- coplanar vectors such that vec a + vec b + vec c = alpha vec d and vec b +vec c + vec d = beta vec a, " then " vec a + vec b + vec c + vec d to equal to

If vec a,vec b, and vec c are three non-coplanar non-zero vecrtors,then prove that (vec a*vec a)vec b xxvec c+(vec a*vec b)vec c xxvec a+(vec a*vec c)vec a xxvec b=[vec bvec cvec a]vec a

vec a, vec b ,, vec c are coplanar vectors, prove that vec a, vec b, vec cvec with a, vec with b, vec a, vec with bvec a, vec bvec b, vec b, vec a] | = 0

If vec a,vec b,vec c are three non coplanar vectors such that vec a.vec a*vec a=vec dvec b=vec d*vec c=0 then show that vec d is the null vector.

If vec a, vec b and vec c are non coplaner vectors such that vec b xxvec c = vec a, vec c xxvec a = vec b and vec a xxvec b = vec c then | vec a + vec b + vec c | =