Home
Class 12
PHYSICS
Derive an expression for electrostatic p...

Derive an expression for electrostatic potential due to an electric dipole.

Text Solution

Verified by Experts

(i) AB be the electric dipole ( -q at A tna +q at B).
2a be the distance between -q and +q.
.r. be the distance between the point .p. and mid point .O. of AB.
`.theta.` be the angle between OP and OB.

(ii) Let `r_1` be the distance of point P from +q and `r_2` be the distance of point P from -q.
Potential at P due to charge +q `= 1/(4 pi epsi_0)q/r_1`
Potential at P due to charge -q `=-1/(4piepsi_(0))q/r_2`
Total potential at the point p,
`V = 1/(4 pi epsi_0 ) q (1/r_1 - 1/r_2)" ....(1)"`
(iii) By the cosine law for triangle BOP.
`r_1^2 = r^2 +a^2 - 2ra costheta`
`r_1^2 = r^2 (1+a^2/r^2 - (2a)/r cos theta)`
Since a a`ltlt`r, term `a^2/r^2` is very small and can be neglected. Therefore
`r_1^2=r^2 (1-2a(cos theta)/r)`
(or) `r_1 = r(1-(2a)/rcos theta)^(1/2)`
`1/r_1 =1/r (1-(2a)/r cos theta)^(1/2)`
(iv) Using binamial theorem we get.
`1/r_1 = 1/r (1+a/rcostheta)" ...(2)"`
Similarly applying the cosne law for triangle AOP,
`r_2^2 = r^2 -a^2-2racos (180 - theta)`
Since cos (`180 - theta`) = `-cos theta` we get
`r_2^2 = r^2 + a^2 + 2ra cos theta`
Neglecting `a^2/r^2` ( because `r gt gt a` )
`a_2^2 = r^2(1+(2a cos theta)/r)`
`r_2 = r(1+(2a cos theta)/r)^(1/2)`
Using Binomial theorem we get
`1/r_2 = 1/r (1-a (cos theta)/r)" ...(3)"`
Substituting equation (3) and (2) in equation (1),
`V=1/(4piepsi_(0))q(1/r(1+a(cos theta)/r)-1/r (1-a(cos theta)/r))`
`V = q/(4piepsi_(0))(1/r(1+a(costheta)/r)-1/r (1-a(cos theta)/r))`
`V=1/(4 piepsi_(0))(2aq)/r^2 cos theta`
(v) But the electric dipole moment p = 2qa and we get,
`V = 1/(4pi epsi_0)((pcos theta)/r^2)`
If p `cos theta = vec p * hatr,` where `hatr` is the unit vector from the point O to point P. then
`V = 1/(4piepsi_0)(vecp*hatr)/r^2" "(r gtgta)" ...(4)"`
Spacial cases
Case (i) If the point P lies on the axial line then `theta = 0`, then
`v = 1/(4 pi epsi_(0)) p/r^2 " ...(5)"`
Case (ii) If the point P lien on the axial line then `theta = 180^@`, then
`V = 1/ (4 pi epsi_(0)) p/r^2 " ...(6)"`
Case (iii) If the point P lies on the equatorial line, then `theta = 90^@`. Hence
V = 0 ...(7)
Promotional Banner

Similar Questions

Explore conceptually related problems

Derive an expression for electrostatic potential energy of the dipole in a uniform electric field .

Define 'electrostatic potential''

Define 'electrostatic potential".