Home
Class 12
MATHS
Show that ( vec axx vec b)xx vec c= vec ...

Show that `( vec axx vec b)xx vec c= vec axx( vec bxx vec c)` if and only if ` vec a` and ` vec c` are collinear of `( vec axx vec c)xx vec b=0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (vec a-vec b)(vec b-vec c)xx(vec c-vec a)=0

(vec a-vec b)*{(vec b-vec c)xx(vec c-vec a)}=0

The vectors vec a xx (vec b xxvec c), vec b xx (vec c xxvec a) and vec c xx (vec a xxvec b) are

For non-zero vectors vec a , vec b ,a n d vec c ,|( vec axx vec b)dot vec c|=| vec a|| vec b|| vec c| holds if and only if a. vec a* vec b=0, vec b* vec c=0 b. vec b* vec c=0, vec c* vec a=0 c. vec c* vec a=0, vec a* vec b=0 d. vec a* vec b=0, vec b* vec c=0, vec c* vec a=0

36. If vec a, vec b, vec c and vec d are unit vectors such that (vec a xx vec b) .vec c xx vec d = 1 and vec a.vec c = 1/2 then a) vec a, vec b and vec c are non-coplanar b) vec b, vec c, vec d are non -coplanar c) vec b, vecd are non parallel d) vec a, vec d are parallel and vec b, vec c are parallel

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n vec adot vec b+ vec bdot vec c+ vec cdot vec a=0 b. vec axx vec b= vec bxx vec c= vec cxx vec a c. vec adot vec b= vec bdot vec c= vec cdot vec a d. vec axx vec b+ vec bxx vec c+ vec cxx vec a=0

vec a * {(vec b + vec c) xx (vec a + 2vec b + 3vec c)} = [vec with bvec c]

Fven that vec A xx vec B= vec B xx vec C = vec 0 . If vec A. vec B and vec C are not null vectors, find the value of vec Cxx vec A .

The vectors vec a xx (vec b xxvec c), vec b xx (vec c xxvec a), vec c xx (vec a xxvec b) are

The length of the perpendicular form the origin to the plane passing through the point a and containing the line vec r= vec b+lambda vec c is a. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c+ vec cxx vec a|) b. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c|) c. ([ vec a vec b vec c])/(| vec bxx vec c+ vec cxx vec a|) d. ([ vec a vec b vec c])/(| vec cxx vec a+ vec axx vec b|)