Home
Class 12
MATHS
For any four vectors, vec a , vec b , v...

For any four vectors, ` vec a , vec b , vec c` and ` vec d` prove that ` vec ddot( vec axx( vec bxx( vec cxx vec d)))=( vec bdot vec d)[ vec a vec c vec d]dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

[vec a, vec b + vec c, vec d] = [vec a, vec b, vec d] + [vec a, vec c, vec d]

Prove that [vec a,vec b,vec c+vec d]=[vec a,vec b,vec c]+[vec a,vec b,vec d]

vec a, vec b, vec c, dare any four vectors then (vec a xxvec b) xx (vec c xxvec d) is a vector Perpendicular to vec a, vec b, vec c, vec d

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

Given four vectors vec a, vec b, vec c, vec d such that vec a + vec b + vec c = alphavec d, vec b + vec c + vec d = betavec a and that vec a, vec a, vec b, vec c are non-coplanar, then the sum vec a + vec b + vec c + vec d is

If vec x+ vec cxx vec y= vec aa n d vec y+ vec cxx vec x= vec b ,w h e r e vec c is a nonzero vector, then which of the following is not correct? vec x=( vec bxx vec c+ vec a+( vec cdot vec a) vec c)/(1+ vec cdot vec c) b. vec x=( vec cxx vec b+ vec b+( vec cdot vec a) vec c)/(1+ vec cdot vec c) c. vec y=( vec axx vec c+ vec b+( vec cdot vec b) vec c)/(1+ vec cdot vec c) d. none of these

If vec a, vec b, vec c and vec d are unit vectors such that (vec a xxvec b) * (vec c xxvec d) = 1 and vec a * vec c = (1) / (2)

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

Statement 1: vec a , vec b ,a n d vec c are three mutually perpendicular unit vectors and vec d is a vector such that vec a , vec b , vec ca n d vec d are non-coplanar. If [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]=1,t h e n vec d= vec a+ vec b+ vec c Statement 2: [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a] =>vec d is equally inclined to veca,vecb,vecc.

For any four vectors,prove that (vec b xxvec c)*(vec a xxvec d)+(vec c xxvec a)*(vec b xxvec d)+(vec a xxvec b)*(vec c xxvec d)=0