Home
Class 11
CHEMISTRY
Calculate the uncertainty in position of...

Calculate the uncertainty in position of an electron, if `Deltav = 0.1% and v = 2.2 xx 10^(6) ms^(-1)`.

Text Solution

Verified by Experts

`Deltax cdot Deltap ge h/(4 pi)`
`Deltax . Deltap ge 5.28 xx 10^(-35) Kg m^(2)s^(-1)`
`Deltax.(m Deltav) ge 5.28 xx 10^(-35) Kgm^2s^(-1)`
Given `Deltav = 0.1 %`
`v = 2.2 xx 10^6 ms^(-1)`
`m = 9.1 xx 10^(-31) Kg`
`Deltav = (0.1)/(100) xx 2.2 xx 10^6 ms^(-1)`
`= 2.2 xx 10^3 ms^(-1)`
`:. Deltax ge (5.28 xx 10^(-35) Kgm^2s^(-1))/(9.1 xx 10^(-31) Kg xx 2.2 xx 10^3 ms^(-1))`
`Delta x ge 2.64 xx 10^(-8) m`.
Promotional Banner

Topper's Solved these Questions

  • QUANTUM MECHANICAL MODEL OF ATOM

    SURA PUBLICATION|Exercise ADDITIONAL QUESTIONS - CHOOSE THE CORRECT ANSWER|78 Videos
  • QUANTUM MECHANICAL MODEL OF ATOM

    SURA PUBLICATION|Exercise ADDITIONAL SHORT ANSWER|39 Videos
  • PUBLIC EXAMINATION - MARCH 2019

    SURA PUBLICATION|Exercise Part - IV|19 Videos
  • SOLUTIONS

    SURA PUBLICATION|Exercise NUMERICAL PROBLEMS|24 Videos

Similar Questions

Explore conceptually related problems

Calculate the uncertainty in the position of an electron if the uncertainty in its velocity is 5.7 xx 10^5 m//sec (h = 6.626 xx 10^(-34) kg m^2 s^(-1) , mass of the electron = 9.1 xx 10^(−31) kg ).

Calculate the product of uncertainity in position and velocity for an electron of mass 9.1 xx 10^(-31) kg according to Heisenberg uncertainty principle.

Using uncertainity principle,calculate the uncertainty in velocity of an electron if the uncertainty in position is 10^(-4) m .

The uncertainty in the position and velocity of a particle are 10^(-2)m and 5.27 xx 10^(-24) ms^(-1) respectively. Calculate the mass of the particle. Given : h = 6.626 xx 10^(-34) kg m^2s^(-1) Deltav = 5.27 xx 10^(-24) ms^(-1) , Deltax = 10^(-2) m