Home
Class 12
MATHS
If | vec a|+| vec b|=| vec c|a n d vec a...

If `| vec a|+| vec b|=| vec c|a n d vec a+ vec b= vec c ,` then find the angle between ` vec aa n d vec bdot`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a + vec b = vec c and | vec a | = | vec b | = | vec c | find the angle between vec a and vec b

prove that | vec axx vec b|=( vec adot vec b)t a ntheta, w h e r e theta is the angle between vec a a n d vec bdot

If |vec a|=3,|vec b|=5,|vec c|=7 and vec a+vec b+vec c=0 then angle between vec a and vec b is

Vectors vec a\ a n d\ vec b are such that | vec a|=3,\ | vec b|=2/3a n d\ ( vec axx vec b) is a unit vector. Write the angle between vec a\ a n d\ vec bdot

vec a + vec b + vec c = vec 0, | vec a | = 3, | vec b | = 5, | vec c | = 7 then angle between vec a and vec b is

If vec a,vec b,vec c are unit vectors such that vec a*vec b=0=vec a*vec c and the angle between vec b and vec c is pi/3, then the value of |vec a xxvec b-vec a xxvec c| is 1/2 b.1 c.2 d.none of these

If vec a+2"" vec b+3"" vec c="" vec0 and |"" vec a|=6,|"" vec b|=3a n d|"" vec c|=2 , then angle between vec aa n d"" vec b is

Vector vec a,vec b and vec c are such that vec a+vec b+vec c=vec 0 and |a|=3,|vec b|=5 and |vec c|=7. Find the angle between vec a and vec b.

If vec a , vec b , vec c are three vectors such that | vec a+ vec b+ vec c|=1, vec c=lambda( vec axx vec b)a n d| vec a|=1/(sqrt(2)),| vec b|=1/(sqrt(3)),| vec c|=1/(sqrt(6)) , find the angle between vec aa n d vec bdot

If | vec a|=10 ,\ | vec b|=2\ a n d\ | vec axx vec b|=16 find vec adot vec bdot