Home
Class 12
MATHS
The values of parameter a for which the ...

The values of parameter `a` for which the point of minimum of the function `f(x)=1+a^2x-x^3` satisfies the inequality `(x^2+x+2)/(x^2+5x+6)<0a r e` `(2sqrt(3),3sqrt(3))` (b) `-3sqrt(3),-2sqrt(3))` `(-2sqrt(3),3sqrt(3))` (d) `(-2sqrt(2),2sqrt(3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The values of parameter a for which the point of minimum of the function f(x)=1+a^(2)x-x^(3) satisfies the inequality (x^(2)+x+2)/(x^(2)+5x+6)lt0 are

The values of parameter a for which the point of minimum of the function f(x)=1+a^(2)x-x^(3) satisfies the inequality (x^(2)+x+2)/(x^(2)+5x+6)<0 are (2sqrt(3),3sqrt(3))(b)-3sqrt(3),-2sqrt(3))(-2sqrt(3),3sqrt(3))(d)(-2sqrt(2),2sqrt(3))

The minimum value of the function f(x)=x^(2)-x+2 is -

The minimum value of the function f(x)=2|x-1|+|x-2| is

The minimum value of the function f(x)=2|x-1|+|x-2| is -

The minimum value of the function f(x) = 2|x - 1| + |x - 2| is

The minimum value of the function f(x)=2|x-2|+5|x-3| for all "x"inR is

The function f(x)=2x^3-3x^2-12x+5 has a minimum at x=

Find the domain of the function , f(x)=(x^2 +2x +3)/(x^2 -5x +6)