Home
Class 12
MATHS
If vec a is a unit vector, vec a xx vec...

If `vec a` is a unit vector, `vec a xx vec r=vec b, vec a* vec r = c, vec a* vec b =0`, then `vec r` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a is a unit vector, vec a xxvec r = vec b, vec a * vec r = c, vec a * vec b = 0 then vec r is equal to

For any three vectors vec a, vec b, vec c, (vec a-vec b) * (vec b-vec c) xx (vec c-vec a) is equal to

vec a and vec b are mutually perpendicular unit vectors. vec r is a vector satisfying vec r * vec a = 0, vec r * vec b = 1 and [vec r vec a vec b] = 1, then vec r is (A) case a + (case a × case b) (B) case b + (case a × case b) (C) vec a + vec b × (vec a × vec b) (D) case a - case b + (case a × case b)

If vec a and vec b are unit vectors such that |vec a xx vec b| = vec a . vec b , then |vec a + vec b|^(2) =

If vec a and vec b are not perpendicular to each other and vec r xx vec a = vec b xx vec a, vec r. vec c = vec 0 then vec r =

vec a,vec b,vec c are the three coplanar vectors and if vec r*vec a=vec r*vec b=vec r*vec c=0 then prove that vec r is a zero vector

Let vec r be a unit vector satisfying vec rxx vec a= vec b ,w h e r e| vec a|=3a n d| vec b|=2. Then vec r=2/3( vec a+ vec axx vec b) b. vec r=1/3( vec a+ vec axx vec b c. vec r=2/3( vec a- vec axx vec b d. vec r=1/3(- vec a+ vec axx vec b

If vec a is perpendicular to vec b and vec r is non-zero vector such that p vec r+( vec rdot vec a) vec b= vec c , then vec r= vec c/p-(( vec adot vec c) vec b)/(p^2) (b) vec a/p-(( vec cdot vec b) vec a)/(p^2) vec a/p-(( vec adot vec b) vec c)/(p^2) (d) vec c/(p^2)-(( vec adot vec c) vec b)/p

If vec a is perpendicular to vec b and vec r is non-zero vector such that p vec r+( vec rdot vec a) vec b= vec c , then vec r= vec c/p-(( vec adot vec c) vec b)/(p^2) (b) vec a/p-(( vec cdot vec b) vec a)/(p^2) vec a/p-(( vec adot vec b) vec c)/(p^2) (d) vec c/(p^2)-(( vec adot vec c) vec b)/p

vec r xxvec a = vec b xxvec a, vec r xxvec b = vec a xxvec b, vec a! = 0, vec b! = 0, vec b! = lambdavec a, vec a is not perpendicular to vec b then vec r is