Home
Class 10
PHYSICS
Explain the concept of degrees of freedo...

Explain the concept of degrees of freedom for molecules of a gas.

Text Solution

Verified by Experts

The number of degrees of freedom of a dynamical system is defined as the total number of co-ordinates or independent quantities required to describe completely the position and configuration of the system.
Promotional Banner

Topper's Solved these Questions

  • KINETIC THEORY

    VGS PUBLICATION-BRILLIANT|Exercise Short Answer Questions|10 Videos
  • KINETIC THEORY

    VGS PUBLICATION-BRILLIANT|Exercise Long Answer Questions|1 Videos
  • HUMAN EYE AND COLOURFUL WORLD

    VGS PUBLICATION-BRILLIANT|Exercise CREATIVE QUESTIONS FOR NEW MODEL EXAMINATION (SECTION-IV) (APPLICATION TO DAILY LIFE, CONCERN TO BIODIVERSITY)|1 Videos
  • LAWA OF MOTION

    VGS PUBLICATION-BRILLIANT|Exercise ADDITIONAL PROBLEMS|22 Videos

Similar Questions

Explore conceptually related problems

Explain the mole concept.

If gamma be the ratio of specific heats of a perfect heals of a perfect gas, the number of degrees of freedom of a molecule the gas is :

Under standard conditions the density of a gas is (1400)/(1089) kg m^(-3) and the speed of sound progagation in it is 330 ms^(-1) then the number of degrees of freedom of the gas molecules is

The average degrees of freedom per molecule for a gas is 6. The gas performs 25J of work when it expands at constant pressure. The heat absorbed by the gas is

The total energy of molecules is divided equally amongst the various degrees of freedom of a molecule. The distribution of kinetic energy along x, y, z axis are E_(K_(x)), E_(K_(y)), E_(K_(z)) Total K.e =E_(K_(x)) + E_(K_(y)) + E_(K_(z)) Since the motion of molecule is equally probable in all the three directions, therefore E_(K_(x)) = E_(K_(y)) = E_(K_(z)) =1/3 E_(K) =1/3 xx 3/2 kT = 1/2 kT , where k =R/N_(A) = Botzman constant. K.E. = 1/2 kT per molecule or =1/2 RT per mole. In vibration motion, molecules possess both kinetic energy as well as potential energy. This means energy of vibration involves two degrees of fiuedom. Vibration energy =2 xx 1/2kT =2 xx 1/2RT [ therefore two degrees of freedom per mole] If the gas molecules have n_(1) translational degrees of freedom, n_2 rotational degrees of freedom and n_(3) vibrational degrees of freedom, that total energy = n_(1)[(kT)/2] + n_(2) [(kT)/2] + n_(3) [(kT)/2] xx 2 Where 'n' is atomicity of gas. How many total degrees of freedom are present in H_(2) molecules in all types of motions ?

The total energy of molecules is divided equally amongst the various degrees of freedom of a molecule. The distribution of kinetic energy along x, y, z axis are E_(K_(x)), E_(K_(y)), E_(K_(z)) Total K.e =E_(K_(x)) + E_(K_(y)) + E_(K_(z)) Since the motion of molecule is equally probable in all the three directions, therefore E_(K_(x)) = E_(K_(y)) = E_(K_(z)) =1/3 E_(K) =1/3 xx 3/2 kT = 1/2 kT , where k =R/N_(A) = Botzman constant. K.E. = 1/2 kT per molecule or =1/2 RT per mole. In vibration motion, molecules possess both kinetic energy as well as potential energy. This means energy of vibration involves two degrees of fiuedom. Vibration energy =2 xx 1/2kT =2 xx 1/2RT [ therefore two degrees of freedom per mole] If the gas molecules have n_(1) translational degrees of freedom, n_2 rotational degrees of freedom and n_(3) vibrational degrees of freedom, that total energy = n_(1)[(kT)/2] + n_(2) [(kT)/2] + n_(3) [(kT)/2] xx 2 Where 'n' is atomicity of gas. The vibrational kinetic energy of CO_2 molecule is

The total energy of molecules is divided equally amongst the various degrees of freedom of a molecule. The distribution of kinetic energy along x, y, z axis are E_(K_(x)), E_(K_(y)), E_(K_(z)) Total K.e =E_(K_(x)) + E_(K_(y)) + E_(K_(z)) Since the motion of molecule is equally probable in all the three directions, therefore E_(K_(x)) = E_(K_(y)) = E_(K_(z)) =1/3 E_(K) =1/3 xx 3/2 kT = 1/2 kT , where k =R/N_(A) = Botzman constant. K.E. = 1/2 kT per molecule or =1/2 RT per mole. In vibration motion, molecules possess both kinetic energy as well as potential energy. This means energy of vibration involves two degrees of fiuedom. Vibration energy =2 xx 1/2kT =2 xx 1/2RT [ therefore two degrees of freedom per mole] If the gas molecules have n_(1) translational degrees of freedom, n_2 rotational degrees of freedom and n_(3) vibrational degrees of freedom, that total energy = n_(1)[(kT)/2] + n_(2) [(kT)/2] + n_(3) [(kT)/2] xx 2 Where 'n' is atomicity of gas. The rotational kinetic energy of H20 molecule is equal to

Explain the concept of absolute zero of termerature on the basis of kinetic theory.