Home
Class 12
MATHS
tan^(-1)x + cot^(-1) (1/x) + 2tan^(-1)z ...

`tan^(-1)x + cot^(-1) (1/x) + 2tan^(-1)z =pi`, then prove that `x + y + 2z = xz^2 + yz^2 + 2xyz`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1) x + tan^(-1) y - tan^(-1) z = 0 , then prove that : x+ y + xyz = z .

If tan^(-1)x+ tan^(-1)y + tan^(-1)z = pi , prove that x + y + z = xyz .

If tan ^ (- 1) x + tan ^ (- 1) y + tan ^ (- 1) z = pi prove that x + y + z = xyz

If Tan^(-1) x + Tan^(-1) y + Tan^(-1) z = pi then prove that x+y+z = xyz .

If tan^-1x + tan^-1y + tan^-1z = pi , then prove that: x + y + z = xyz.

If Tan^(-1)x+Tan^(-1)y + Tan^(-1)z = (pi)/2 , then prove that xy + yz + zx = 1

If tan^(-1) x+tan^(-1)y+tan^(-1)z=pi/2 then prove that yz+zx+xy=1

If tan^-1 x + tan^-1y - tan^-1z = 0 , then prove that x + y + xyz = z.