Show that `tan48^(@) tan 23^(@) tan 42^(@) tan 67^(@) =1`.
Text Solution
Verified by Experts
LHS = `tan 48^(@) tan 23(@) tan42^(@) tan 67^(@)` `" " = Cot (90^(@)- 48^(@)) cot (90^(@)- 23^(@)) tan 42^(@) tan 67^(@)` `" " = Cot 42^(@) cos 67^(@) tan 42^(@) tan 67^(@)` `" " =1 `
Topper's Solved these Questions
SAMPLE PAPER 2019
X BOARDS|Exercise SECTION-B 24 (b)|1 Videos
SAMPLE PAPER 2019
X BOARDS|Exercise SECTION-C 28 (a)|1 Videos
SAMPLE PAPER 2019
X BOARDS|Exercise SECTION-B 22 (b)|1 Videos
QUESTION PAPER 2023
X BOARDS|Exercise Question|88 Videos
X Boards
X BOARDS|Exercise All Questions|494 Videos
Similar Questions
Explore conceptually related problems
show that tan48^(@).tan23^(@)*tan42^(@)*tan67^(@)=1
Shown that : tan48^(@)tan23^(@)tan42^(@)tan67^(@)=1
Show that tan48^(@)tan16^(@)tan42^(@)tan74^(@)=1
Prove that : tan22^(@)+tan23^(@)+tan22^(@).tan23^(@)=1.
Prove that tan12^(@)tan24^(@)tan48^(@)tan84^(@)=1
What is the value of (tan 9^(@) tan 23^(@) tan 60^(@) tan67^(@) tan 81^(@))/("cosec"^(2)72^(@)+cos^(2)15^(@)-tan^(2)18^(@)+cos^(2)75^(@))? (a) (1)/(2 sqrt(3)) (b) (sqrt(3))/(2) (c) (1)/(sqrt(3)) (d) 2 sqrt(3)