If ` vec a , vec b , vec c`
are mutually perpenedicular
vectors of equal magnitudes, show that
the vector ` vec a+ vec b+ vec c`
is equally inclined to ` vec a , vec b , vecc`
Text Solution
AI Generated Solution
Topper's Solved these Questions
THERMODYNAMICS
BANSAL|Exercise Match the column|7 Videos
Similar Questions
Explore conceptually related problems
If vec a,vec b,vec c are mutually perpendicular vectors of equal magnitude,show the vectors vec a+vec b+vec c is equally inclined to vec a,vec b and vec c.
If vec a,vec b, and vec c are mutually perpendicular vectors of equal magnitudes,then find the angle between vectors vec a and vec a+vec b+vec c
If vec a,vec b,vec c are three mutually perpendicular vectors of equal magniltgude,prove that vec a+vec b+vec c is equally inclined with vectors vec a,vec b, and vec r also find the angle.
If vec a,vec b,vec c are mutually perpendicular unit vectors,find |2vec a+vec b+vec c|
If vec a,vec b,vec c are any time mutually perpendicular vectors of equal magnitude a then |vec a+vec b+vec c| is equal to a b.sqrt(2)a .sqrt(3)a d.2a e.none of these
Statement 1: vec a , vec b ,a n d vec c are three mutually perpendicular unit vectors and vec d is a vector such that vec a , vec b , vec ca n d vec d are non-coplanar. If [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]=1,t h e n vec d= vec a+ vec b+ vec c Statement 2: [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a] =>vec d is equally inclined to veca,vecb,vecc.
If vec a and vec b are vectors of equal magnitude, write the value of (vec a+vec b)vec a-vec b
If a,b,c are three mutually perpendicular vector each of magnitude unity,then what is the magnitude of |vec a+vec b+vec c|?
If vec a, vec b, vec c are three mutually perpendicular vectors such that | vec a | = | vec b | = | vec c | then (vec a + vec b + vec c) * vec a =
If vec a and vec b and vec c are mutually perpendicular unit vectors,write the value of |vec a+vec b+vec c|