Home
Class 12
MATHS
If vec a , vec b , vec ca n d vec d are...

If ` vec a , vec b , vec ca n d vec d` are the position vectors of the vertices of a cyclic quadrilateral `A B C D ,` prove that `(| vec axx vec b+ vec bxx vec d+ vec dxx vec a|)/(( vec b- vec a)dot( vec d- vec a))+(| vec bxx vec c+ vec cxx vec d+ vec dxx vec b|)/(( vec b- vec c)dot( vec d- vec c))=dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

[vec a, vec b + vec c, vec d] = [vec a, vec b, vec d] + [vec a, vec c, vec d]

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

If vec axvec b=vec cxvec d and vec axvec c=vec bxvec d show that vec a-vec d is parallel to vec b-vec c where vec a!=vec d and vec b!=vec c

If vec a xxvec b=vec c xxvec d and vec a xxvec c=vec b xxvec d show that vec a-vec d is parallel to vec b-vec c, where vec a!=vec d and vec b!=vec c

If vec a xxvec b=vec c xxvec d and vec a xxvec c=vec b xxvec d show that vec a-vec d is parallel to vec b-vec c, where vec a!=vec d and vec b!=vec r

If vec a xxvec b = vec c xxvec d and vec a xxvec c = vec b xxvec d then show that vec a-vec d is parallel to vec b-vec c

Prove that [vec a,vec b,vec c+vec d]=[vec a,vec b,vec c]+[vec a,vec b,vec d]

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then vec b= vec c b. vec b=0 c. vec b+ vec c=0 d. none of these

If vec a , vec b , vec c and vec d are the position vectors of points A, B, C, D such that no three of them are collinear and vec a + vec c = vec b + vec d , then ABCD is a