Home
Class 12
MATHS
vec rxx vec a= vec bxx vec a ; vec rxx v...

` vec rxx vec a= vec bxx vec a ; vec rxx vec b= vec axx vec b ; vec a!= vec0; vec b!= vec0; vec a!=lambda vec b ,a n d vec a` is not perpendicular to ` vec b ,` then find ` vec r` in terms of ` vec aa n d vec bdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

vec r xxvec a = vec b xxvec a, vec r xxvec b = vec a xxvec b, vec a! = 0, vec b! = 0, vec b! = lambdavec a, vec a is not perpendicular to vec b then vec r is

[vec a, vec b + vec c, vec d] = [vec a, vec b, vec d] + [vec a, vec c, vec d]

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then vec b= vec c b. vec b=0 c. vec b+ vec c=0 d. none of these

If vec rdot vec a=0, vec rdot vec b=1a n d[ vec r vec a vec b]=1, vec adot vec b!=0,( vec adot vec b)^2-=| vec a|^2| vec b|^2=1, then find vec r in terms of vec aa n d vec bdot

Prove that [vec a,vec b,vec c+vec d]=[vec a,vec b,vec c]+[vec a,vec b,vec d]

If vec a=vec p+vec q,vec p xxvec b=0 and vec q*vec b=0 then prove that (vec b xx(vec a xxvec b))/(vec b*vec b)=vec q

Find |vec a| and |vec b|, if :(vec a+vec b)vec a-vec b=8 and |vec a|=8|vec b|

If vec a + vec b = vec c and | vec a | = | vec b | = | vec c | find the angle between vec a and vec b

Let vec a , vec ba n d vec c be three non-coplanar vectors and vec p , vec qa n d vec r the vectors defined by the relation vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c])a n d vec r=( vec axx vec b)/([ vec a vec b vec c])dot Then the value of the expression ( vec a+ vec b)dot vec p+( vec b+ vec c)dot vec q+( vec c+ vec a)dot vec r is a. 0 b. 1 c. 2 d. 3

find | vec a |, | vec b | if (vec a + vec b) * (vec a-vec b) = 8 and | vec a | = 8 | vec b |