Home
Class 12
MATHS
Prove that underset(r=0)overset(n)sum""^...

Prove that `underset(r=0)overset(n)sum""^(n)C_(r)(-1)^(r)[i^(r)+i^(2r)+i^(3r)+i^(4r)]`
`=2^(n) + 2^(n+1)cos (npi//4)` , where `i = sqrt(-1)`

Text Solution

Verified by Experts

`underset(r=0)overset(n)sum.^(n)C_(r)(-1)^(r)[i^(r)+i^(2r)+i^(3r)+u^(4r)]`
`=underset(r=0)overset(n)sum.^(n)C_(r)(-1)^(r)[i^(r) + (-1)^(r) + (-i)^(r)+1]`
` = underset(r=0)overset(n)sum[.^(n)C_(r)(-1)^(r)+.^(n)C_(r)+.^(n)C_(r)i^(r)+.^(n)C_(r)(-1)^(r)]`
`= (1-r)^(n) + (1+1)^(n) + (1+i)^(n) + (1-i)^(n)`
`=(sqrt(2))^(n) (1/(sqrt(2))-i/(sqrt(2)))^(n) + (sqrt(2))^(n) (1/(sqrt(2))+(i)/(sqrt(2)))^(n) + 2^(n)`
`= (sqrt(2))^(n)(cos'pi/4-isin'(pi)/(4))^(n)+(sqrt(2))^(n)(cos'(pi)/(4) + isin'(pi)/(4))^(n)+2^(n)`
`=(sqrt(2))^(n)(cos'(npi)/(4) - isin'(npi)/(4))+(sqrt(2))^(n)(cos'(npi)/(4) + i sin'(npi)/(4)) + 2^(n)`
` = 2(sqrt(2))^(n) cos'(npi)/(4) + 2^(n)`.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^(n)C_(r)(-1)^(r)[i+i^(2r)+i^(3r)+i^(4r)]=2^(n)+2^((n)/(2)+1)cos(n pi/4), where i=sqrt(-1) -

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

underset(r=0)overset(n-1)(sum)(.^(n)C_(r))/(.^(n)C_(r)+.^(n)C_(r+1)) equals

Prove that overset(n)underset(r=0)(Sigma^(n))C_(r).4^(r)=5^(n)

underset(r=1)overset(n)sum ( r )/(r^(4)+r^(2)+1) is equal to

Sum of the series sum_(r=0)^(n)(-1)^(r)^^nC_(r)[i^(5r)+i^(6r)+i^(7r)+i^(8r)] is

underset(r=0)overset(n)(sum)(-1)^(r).^(n)C_(r)[(1)/(2^(r))+(3^(r))/(2^(2r))+(7^(r))/(2^(3r))+(15^(r))/(2^(4r))+ . . .m" terms"]=

Deduce that: sum_(r=0)^(n)*^(n)C_(r)(-1)^(n)(1)/((r+1)(r+2))=(1)/(n+2)