Home
Class 12
MATHS
If k and n are positive integers and S(...

If k and n are positive integers and `S_(k) = 1^(k) + 2^(k) + 3^(k) + "……" + n^(k)`, then prove that `sum_(r=1)^(m) ""^(m+1)C_(r )s_(r) = (n+1)^(m+1) - (n+1)`

Text Solution

Verified by Experts

`S = underset(r=1)overset(m)sum.^(m+1)C_(r) S_(r)`
`= [.^(m+1)C_(1)s_(1)+.^(m+1)C_(2)s_(2) + "……." + .^(m+1)C_(m)s_(m)]`
`= .^(m+1)C_(1)(1+2+3+"….."+n)`
`+ .^(m+1)C_(2)(1^(3)+2^(3)+3^(3)+"……."+n^(3))`
`+.^(m+1)C_(3)(1^(3)+2^(3)+3^(3)+"......."+n^(m))`
`+.^(m+1)C_(m)(1^(m)+2^(m)+3^(m)+"....."+n^(m))`
`= (.^(m+1)C_(1)1+.^(m+1)C_(2)1^(2)+.^(m+1)C_(3)1^(3) + "......."+.^(m+1)C_(m)1^(m))`
`+(.^(m+1)C_(1)2+.^(m+1)C_(2)2^(2)+.^(m+1)C_(3)2^(3)+"......." +.^(m+1)C_(m)2^(m))+"......."+(.^(m+1)C_(1)n+.^(m+1)C_(2)n^(2)+"......"+.^(m+1)C_(m)n^(m))`
` = [(1+1)^(m+1)-1-.^(m+1)C_(m+1)1^(m+1)]`
`+[(1+2)^(m+1)-1-.^(m+1)C_(m+1)2^(m+1)]`
`+[(1+3)^(m+1)-1-.^(m+1)C_(m+1)3^(m+1)]+"......"`
` = (2^(m+1)-1^(m+1))+(3^(m+1)-2^(m+1))+(4^(m+1)-3^(m+1))+"......"`
`+ [(1+n)^(m+1)-n^(m+1)]-n`
`= (1+n)^(m+1)-1-n=(1+n)^(m+1)- (n+1)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

If k and n are positive integers and s_(k)=1^(k)+2^(k)+3^(k)+...+n^(k), then prove that sum_(r=1)^(m)m+1C_(r)s_(r)=(n+1)^(m+1)-(n+1)

Show that sum_(k=m)^n ^kC_r=^(n+1)C_(r+1)-^mC_(r+1)

prove that sum_(k=1)^(n)k2^(-k)=2[1-2^(-n)-n*2^(-(n+1)))

sum_ (k = 1) ^ (n) (2 ^ (k) + 3 ^ (k-1))

sum_(k =1)^(n) k(1 + 1/n)^(k -1) =

The value of sum_(r=1)^(n+1)(sum_(k=1)^(n)C(k,r-1))=

If n is a positive integer and C_(k)=""^(n)C_(k) , then the value of sum_(k=1)^(n)k^(3)((C_(k))/(C_(k-1)))^(2) is :

If n is a positive integer and C_(k)=.^(n)C_(k) then find the value of sum_(k=1)^(n)k^(3)*((C_(k))/(C_(k-1)))^(2)