Home
Class 12
MATHS
If 9^7-7^9 is divisible b 2^n , then fin...

If `9^7-7^9` is divisible b `2^n ,` then find the greatest value of `n ,w h e r en in Ndot`

Text Solution

Verified by Experts

We have
`9^(7)-7^(9) = (1+8)^(7) - (1-8)^(9)`
`= (1+.^(7)C_(1)8^(1)+.^(7)C_(2)8^(2)+"….."+.^(7)C_(7)8^(7)) - (1-.^(9)C_(1)8^(1)+.^(9)C_(2)8^(2)-"……."-.^(9)C_(9)8^(9))`
`= 16xx8+64[(.^(7)C_(2)+"….."+.^(7)C_(7)8^(5))-(.^(9)C_(2)-"……"-.^(9)C_(9)8^(7))]`
`= 64k` (where k is some integer )
Therefore, `9^(7) - 7^(9)` is divisible by `64`.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

If 9^(7)+7^(9) is divisible b 2^(n), then find the greatest value of n, wheren in N.

If 133! is divisible by 7^(n) then find the maximum value of n.

If 486*7 is exactly divisible by 9, then the least value of * is

Find the value of -3/7+9/7

Find the value of ( -2 7/9 )^2

Find the value of 9 - | - 7 |