Home
Class 12
MATHS
Find the degree of the polynomial 1/(sqr...

Find the degree of the polynomial `1/(sqrt(4x+1)){((1+sqrt(4x+1))/2)^7-((1+sqrt(4x+1))/2)^7}`

Text Solution

Verified by Experts

`(1)/(sqrt(4x+1)){((1+sqrt(4x+1))/(2))^(7) - ((1-sqrt(4x+1))/(2))^(7)}`
` = (2)/(2^(7)sqrt(4x+1)) [.^(7)C_(1)sqrt(4x+1) + .^(7)C_(3)(sqrt(4x+1))^(3) + .^(7)C_(5)(sqrt(4x+1))^(5) + .^(7)C_(7)(sqrt(4x+1))^(7)]`
` = (1)/(2^(6))[.^(7)C_(1)+.^(7)C_(3)(4x+1)+.^(7)C_(5)(4x+1)^(2)+.^(7)C_(7)(4x+1)^(3)]`
Clearly the degree of the polynomial is 3.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

If n be the degree of the polynomial sqrt(3x^(2)+1){(x+sqrt(3x^(2)+1))^(7)-(x-sqrt(3x^(2)+1))^(7)} then n is divisible by

(1)/(sqrt(4x+1)){((1+sqrt(sqrt(x+1)))/(2))^(n)-((1-sqrt(4x+1))/(2))^(n)}=a_(0)+a_(1)x

sqrt(x+1)-sqrt(x-1)=sqrt(4x-1)

The expression (1)/( sqrt( 3x +1)) [ ( ( 1+ sqrt( 3x + 1))/(2))^(7) - (( 1- sqrt ( 3x +1))/(2))^(7)] is a polynomial in x of degree eual to

find x: (sqrt(x+1)+sqrt(x-1))/(sqrt(x+1)-sqrt(x-1))=3/7

Degree of the polynomial (x^(2)-sqrt(1-x^(3)))^(4)+(x^(2)+sqrt(1-x^(3)))^(4) is

Degree of the polynomial [sqrt(x^(2)+1)+sqrt(x^(2)-1)]^(8)+[(2)/(sqrt(x^(2)+1)+sqrt(x^(2)-1))]^(8) is.

(1)/(sqrt(21+4x-x^(2)))

int(2x-7)/(sqrt(4x-1))*dx