Home
Class 12
MATHS
If n = 12 m (m in N), prove that .^(n...

If `n = 12 m (m in N)`, prove that
`.^(n)C_(0)- (.^(n)C_(2))/((2+sqrt(3))^(2)) + (.^(n)C_(4))/((2+sqrt(3))^(4))-(.^(n)C_(n))/((2+sqrt(3))^(6)) + "....." = (-1)^(m) ((2sqrt(2))/(1+sqrt(3)))^(n)`

Text Solution

Verified by Experts

`.(n)C_(0)-(.^(n)C_(2))/((2+sqrt(3))^(2))+(.^(n)C_(4))/((2+sqrt(3))^(4))-(.^(n)C_(6))/((2+sqrt(3))^(6))+"...."`
= Real part of `(1+(i)/(2sqrt(3)))^(n)`
= Real part of `(1+i(2-sqrt(3))^(n)`
= Real part of `(1+ I tan'(pi)/(12))^(n)`
= Real part of `((cos'pi/12+isin'(pi)/(12))^(n))/(cos^(n)'(pi)/(12))`
= Real part of `((cos' (npi)/(12)+isin'(npi)/(12)))/(cos^(n)'(pi)/(12))`
` = (cos'(npi)/(12))/(cos^(n)'(pi)/(12)) = (cos mpi)/(cos^(n)'(pi)/(12))`
` = (-1)^(m)((2sqrt(2))/(1+sqrt(3)))^(n) , [:' cos'(pi)/(12) = (sqrt(3) + 1)/(2sqrt(2))]`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

If n=12m(m in N), prove that ^nC_(0)-(^nC_(2))/((2+sqrt(3))^(2))+(^nC_(4))/((2+sqrt(3))^(4))-(^nC_(6))/((2+sqrt(3))^(6))+...=((2sqrt(2))/(1+sqrt(3)))^(n)

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that (1)/(n+1)=(nC_(1))/(2)-(2(^(n)C_(2)))/(3)+(3(^(n)C_(3)))/(4)-...+(-1)^(n+1)(n(^(n)C_(n)))/(n+1)

(.^(n)C_(1))/(2)-(2(.^(n)C_(2)))/(3)+(3(.^(n)C_(3)))/(4)-....+(-1)^(n+1)(n(.^(n)C_(n)))/(n+1)=

Prove that mC_(1)^(n)C_(m)-^(m)C_(2)^(2n)C_(m)+^(m)C_(3)^(3n)C_(m)-...=(-1)^(m-1)n^(m)

Prove that (C_(1))/(1)-(C_(2))/(2)+(C_(3))/(3)-(C_(4))/(4)+...+((-1)^(n-1))/(n)C_(n)=1+(1)/(2)+(1)/(3)+...+(1)/(n)

Prove that ((2n)!)/(2^(2n)(n!)^(2))<=(1)/(sqrt(3n+1)) for all n in N

(2^(2)*c_(0))/(1.2)+(2^(3)*C_(1))/(2.3)+(2^(4)*c_(2))/(3.4)+......+(2^(n+2)*C_(n))/((n+1)(n+2))=

Prove that: sqrt((1)/(4))+(0.01)^(-(1)/(2))-(27)^((2)/(3))=(3)/(2) (ii) (2^(n)+2^(n-1))/(2^(n+1)-2^(n))=(3)/(2)