Home
Class 12
MATHS
Using binomial theorem, evaluate : (102)...

Using binomial theorem, evaluate : `(102)^5`

Text Solution

Verified by Experts

`(102)^(5) = (100 + 2)^(5)`
`= .^(5)C_(0) + .^(5)C_(1) (100)^(4)(2) + .^(5)C_(2) (100)^(3) (2)^(2)`
`+ .^(5)C_(3) (100)^(2) (2)^(3) + .^(5)C_(4)(100) (2)^(4) + .^(5)C_(5) (2)^(5)`
`= (100)^(5) + 5 (100)^(4) (2) + 10(100)^(3)(2)^(2)`
`+10(100)^(2) (2)^(3) + 5 (100)(2)^(4) + (2)^(5)`
`= 10000000000 + 10000000000 + 40000000 + 800000 + 8000 + 32`
`= 11040808032`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Using binomial theorem,evaluate: (101)^(4)

Using the binomial theorem,evaluate (102)^(5)

Byusing binomial theorem evaluate (i) (107)^(5) , (ii) (55)^(3)

Using binomial theorem,evaluate: (99)^(5)

Using binomial theorem,evaluate: (96)^(3)

Using Binomial theorem, evaluate (0.99)^15 correct to fur places of decimal.

Byusing binomial theorem evaluate (i) (101)^(3) , (ii) (47)^(4)

Using binomial theorem, find the value of (103)^(4) .

Using binomial theorem find the value: (1)(0.999)^(4) [correct to three places of decimals]

Using binomial theorem, find the value of (0.99)^(15) up to four places of decimal.