Home
Class 12
MATHS
Which is larger : (99^(50)+100^(50)) or ...

Which is larger : `(99^(50)+100^(50))` or `(101)^(50)`.

Text Solution

Verified by Experts

We have
`101^(50) = (100 + 1)^(50) = .^(50)C_(0)100^(50) + .^(50)C_(1) 100^(49) + .^(50)C_(2)100^(48) + "…"`
` = 100^(50) + 50 xx 100^(49) + (50 xx 49)/(1 xx 2) x 100^(48)`
` + ( 50 xx 49 xx 48)/(1 xx 2 xx 3) xx 100^(47)"….."(1)`
and `99^(50) = (100 - 1)^(50)`
`= .^(50)C_(0)100^(50) - .^(50)C_(1)100^(49) + .^(50)C_(2)100^(48)+"...."`
` = 100^(50) - 50 xx 100^(49) + (50 xx 49)/(1 xx 2) xx 100^(48)`
`- (50 xx 49 xx 48)/(1 xx 2 xx 3) xx 100^(47)"......"(2)`
Substracting (2) form (1), we get
`101^(50) - 99^(50) = 100^(50) + 2 xx (50 xx 49 xx 48)/(1 xx 2 xx 3) xx 100^(47) + "......." gt 100^(50)`
Hence, `101^(50) gt 100^(50) + 99^(50)`.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Using binomial theorem,prove that (101)^(50)>100^(50)+99^(50).

50,000((10.5)/(100))^(2)

Using binomial theorem, prove that (101)^(50) gt(100^(50)+99^(50)).

The value of 99^(50) - 99.98^(50) + (99*98)/(1*2) (97)^(50) -…+ 99 is

The value of ((50),(0)) ((50),(1)) + ((50), (1)) ((50),(2)) +............+ ((50),(49))((50),(50)) is