Home
Class 12
MATHS
If =(2+sqrt(3))^n=I+f,w h e r eIa n dn p...

If `=(2+sqrt(3))^n=I+f,w h e r eIa n dn` positive integers and `0

Text Solution

Verified by Experts

`(2+sqrt(3))^(n) = I + f`
or `I + f = 2^(n) + .^(n)C_(1)2^(n-1) sqrt(3) + .^(n)C_(2)2^(n-2)(sqrt(3))^(2) + .^(n)C_(3)2^(n-3) (sqrt(3))^(3) + "….." (1)`
Now, `0 lt 2 - sqrt(3) - 1`
`rArr 0 (2-sqrt(3))^(n) lt 1`
Let `(2-sqrt(3))^(n) lt 1`
`:. f' = 2^(n) - .^(n)C_(1) 2^(n-1)sqrt(3)+.^(n)C_(2)2^(n-2)(sqrt(3))^(2) - .^(n)C_(3)2^(n-3)(sqrt(3))^(3) + "....." (2)`
Adding (1) and (2), we get
`I + f + f' = 2[2^(n) + .^(n)C_(2)2^(n-2)xxsqrt(3)+"....."]`
or `I + f + f' = "even integer" " "(3)`
Now, `0 lt f lt 1` and `0 lt f' lt 1`
`:. 0 lt f + f' lt 2`
Hence, from (3) we conclude that `f + f'` is an integer between 0 and 2. Therefore,
`f + f' = 1` or `f' = 1 - f " " (4)`
From (3) and (4), we get `I + 1` is an even interger. Therefore, I is an odd integer. Now,
`I + f = (2+sqrt(3))^(n), f' = 1 - f = (2-sqrt(3))^(n)`
`:. (I+f)(1-f) = [(2+sqrt(3))(2-sqrt(3))]^(n) = (4-3)^(n) = I`
`:. (I + f) (1-f) = 1`.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

If (2+sqrt(3))^n=I+f, whare I and n are positive integers and 0

If (5+2sqrt(6))^(n)=m+f, where n and m are positive integers and 0<=f<=1, then (1)/(1-f)-f is equal to

If (9 + 4 sqrt(5))^(n) = I + f ,n and l being positive integers and f is a proper fraction , show that (I-1 ) f + f^(2) is an even integer.

" If "(4+sqrt(15))^(n)=I+F" when "I," n are positive integers,"0ltFlt1" then "(I+F)(1-F)

(-i)^(4n+3), where n Is a positive integer.

If (9 + sqrt80)^n =1+f, where I, n are integers and 0 lt f lt 0 : (A) I is an odd Integer (B) I is even integer (C) (I+f) (1-f)=1 (D) 1-f=(9-sqrt 80)^n

If (4+sqrt(15))^n=I+f,w h r en is an odd natural number, I is an integer and 0

If (5 + 2 sqrt(6))^(n) = I + f , where I in N, n in N and 0 le f le 1, then I equals

Show that (-sqrt(-1))^(4n+3) =i , where n is a positive integer.

If p=(8+3sqrt(7))^n a n df=p-[p],w h e r e[dot] denotes the greatest integer function, then the value of p(1-f) is equal to a.1 b. 2 c. 2^n d. 2^(2n)