Home
Class 12
MATHS
Prove that sum(alpha+beta+gamma) (10!)/...

Prove that ` sum_(alpha+beta+gamma) (10!)/(alpha!beta!gamma!)=3^(10)`.

Text Solution

Verified by Experts

Consider expansion of `(x+y+z)^(10)`
General term `T_(r ) = (10!)/(alpha!beta!gamma!) x^(alpha)y^(beta)z^(gamma)`. Where `alpha + beta + gamma = 10`
Now `underset(alpha+beta+gamma=10)(sum)(10!)/(alpha!beta!gamma!)=3^(10)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(alpha+beta+gamma=10)(10!)/(alpha!beta!gamma!)=3^(10)

If alpha,beta,gamma,in(0,(pi)/(2)), then prove that (si(alpha+beta+gamma))/(sin alpha+sin beta+sin gamma)<1

Prove that: | alpha beta gamma alpha^(2)beta^(2)gamma^(2)beta+gamma gamma+alpha alpha+beta|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

Prove that cos alpha+cos beta+cos gamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/(2))cos((beta+gamma)/(2))cos((gamma+alpha)/(2))

Prove that: cos alpha+cos beta+cos gamma+cos(alpha+beta+gamma)=4(cos( alpha + beta ))/(2)(cos( beta + gamma ))/(2)(cos( gamma + alpha ))/(2)

Prove that: sin alpha+sin beta+sin gamma-sin(alpha+beta+gamma)=4sin((alpha+beta)/(2))*sin((beta+gamma)/(2))*sin((gamma+alpha)/(2))

Prove that: sin alpha+sin beta+sin gamma-sin(alpha+beta+gamma)=4sin((alpha+beta)/(2))sin((beta+gamma)/(2))sin((gamma+alpha)/(2))

Prove that cos alpha+cos beta+cos gamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/(2))cos((beta+gamma)/(2))cos((gamma+alpha)/(2))

sin (beta+ gamma- alpha) + sin (gamma+ alpha - beta) + sin (alpha + beta- gamma)- sin (alpha + beta + gamma)=

if alpha,beta,gamma are roots of 2x^(3)+x^(2)-7=0 then find the value of sum_(alpha,beta,gamma)((alpha)/(beta)+(beta)/(gamma))