Home
Class 12
MATHS
If a1,a2, a3, a4 be the coefficient of f...

If `a_1,a_2, a_3, a_4` be the coefficient of four consecutive terms in the expansion of `(1+x)^n ,` then prove that: `(a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot`

Text Solution

Verified by Experts

Let the coefficients of `T_(r),T_(r+1),T_(r+2),T_(r+3)` be `a_(1),a_(2),a_(3),a_(4)`, respectively in the expansion of `(1+x)^(n)`. Then,
`(a_(2))/(a_(1)) = (.^(n)C_(r))/(.^(n)C_(r+1)) = (n-r+1)/(r )`
or `1+(a_(2))/(a_(1)) = (n+1)/(r)`
Similarly
`1+(a_(3))/(a_(2)) = (n+1)/(r+1)` and `1+(a_(4))/(a_(3)) = (n+1)/(r+2)`
Now,
`L.H.S.=(a_(1))/(a_(1)+a_(2))+(a_(3))/(a_(3)+a_(4))=(1)/(1+(a_(2))/(a_(1)) )+(1)/(1+(a_(4))/(a_(3)))`
`=(r)/(n+1)+(r+2)/(n+1)=(2(r+1))/(n+1)=2(1)/(1+(a_(3))/(a_(2)))= (2a_(2))/(a_(2)+a_(3))`
`=R.H.S.`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

If a_1,a_2,a_3 and a_4 be any four consecutive coefficients in the expansion of (1+x)^n , prove that a_1/(a_1+a_2)+a_3/(a_3+a_4)= (2a_2)/(a_2+a_3)

If a_0,a_1,a_2,……a_n be the successive coefficients in the expnsion of (1+x)^n show that (a_0-a_2+a_4……..)^2+(a_1-a_3+a_5………)^2=a_0+a_1+a_2+………..+a_n=2^n

If a_i>0, i=1, 2, 3,..., n then prove that a_1/a_2+a_2/a_3+a_3/a_4+...+a_(n-1)/a_n+a_n/a_1gen .

If 1, a_1,a_2,a_3 ,…, a_(n-1) are the nth roots of unity then prove that : (1-a_1)(1-a_2)(1-a_3)...(1-a_(n-1)) =n.

Prove that ((a_1)/(a_2)+(a_3)/(a_4)+(a_5)/(a_6)) ((a_2)/(a_1)+(a_4)/(a_3)+(a_6)/(a_5)) geq 9

Evaluate: /_\ |[1+a_1, a_2, a_3],[a_1, 1+a_2, a_3],[a_1, a_2, 1+a_3]|

If 1, a_1,a_2,a_3 ,…, a_(n-1) are the nth roots of unity then prove that : 1+a_1+a_2+…+a_(n-1) =0.