Home
Class 12
MATHS
Find the sum sum(r=1)^(n)(r""^(n)C(r))/(...

Find the sum `sum_(r=1)^(n)(r""^(n)C_(r))/(""^(n)C_(r-1))`.

Text Solution

Verified by Experts

`underset(r=1)overset(n)sum(r.^(n)C_(r))/(.^(n)C_(r-1))=underset(r=1)overset(n)sumr(n-r+1)/(r)`
`= (n+1)underset(r=1)overset(n)sum1-underset(r=1)overset(n)sumr`
`=n(n+1)-(n(n+1))/(2)`
`= (n(n+1))/(2)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Find the sum of sum_(r=1)^(n)(r^(n)C_(r))/(^nC_(r-1))

Find the sum sum_(r=1)^(n)(r)/(r+1)!

Find the sum sum_(r=1)^(n)r^(2)(^nC_(r))/(n_(C_(r-1)))

Find the sum sum_(r=0)^n(-1)^r*(""^nC_r)/(""^(r+3)C_r)

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to

Find sum of sum_(r=1)^(n)r.C(2n,r)