Home
Class 12
MATHS
If n >2, then prove that C1(a-1)-C2xx(a-...

If `n >2,` then prove that `C_1(a-1)-C_2xx(a-2)++(-1)^(n-1)C_n(a-n)=a ,w h e r eC_r=^n C_rdot`

Text Solution

Verified by Experts

`S = C_(1)(a-1)- C_(2)(a-2) + "…." + (-1)^(n-1)C_(n)(a-n)`
`:. T_(r) = (-1)^(r-1)(a-r).^(n)C_(r)`
`= (-1)^(r-1)(a.^(n)C_(r) - r.^(n)C_(r))`
`= (-1)^(r-1)(a.^(n)C_(r)-n.^(n-1)C_(r-1))`
` = - a (-1)^(r ). .^(n)C_(r) - n (-1)^(r=1 xx n - 1) C_(r-1)`
Now, `S = underset(r=1)overset(n)sumT_(r)`
`= -a[(1-1)^(n)-.^(n)C_(0)] - n(1-1)^(n-1)`
`= an`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

If n>2, then prove that C_(1)(a-1)-C_(2)xx(a-2)+...+(-1)^(n-1)C_(n)(a-n)=a, where C_(r)=^(n)C_(r)

Prove that .^(n)C_(r)+^(n)C_(r-1)=^(n+1)C_(r)

Prove that C_(0)2^(2)C_(1)+3C_(2)4^(2)C_(3)+...+(-1)^(n)(n+1)^(2)C_(n)=0 where C_(r)=nC_(r)

Find the sum 1xx2xx C_(1)+2xx3C_(2)+..+n(n+1)C_(n), where C_(r)=^(n)C_(r)

Prove that ^nC_(r)+^(n-1)C_(r)+...+^(r)C_(r)=^(n+1)C_(r+1)

Show that,nCr+(n-1)C(r-1)+(n-1)C(r-2)=(n+1)Cr

If 1<=r<=n, then n^(n-1)C_(r)=(n-r+1)^(n)C_(r-1)

Prove that ""^(n)C_(r )+2""^(n)C_(r-1)+ ""^(n)C_(r-2)= ""^(n+2)C_(r ) .