Home
Class 12
MATHS
Find the sum 3^n C0-8^n C1+13^n C2xx^n C...

Find the sum `3^n C_0-8^n C_1+13^n C_2xx^n C_3+dot`

Text Solution

Verified by Experts

The general term of the series is `T_(r) = (-1)^(r ) (3+5r).^(n)C_(r )`
where `r = 0, 1, 2, "…..", n`. Therefore, sum of the series is given by
`S=underset(r=0)overset(n)sum(-1)^(r)(3+5r).^(n)C_(r)`
`=3(underset(r=0)overset(n)sum(-1)^(r).^(n)C_(r))+5(underset(r=1)overset(n)sum(-1)^(r ) n .^(n-1)C_(r-1))`
`= 3(underset(r=0)overset(n)sum(-1)^(r).^(n)C_(r))-5(underset(r=1)overset(n)sum(-1)^(r ) .^(n-1)C_(r-1))`
`= 3(1-1)^(n) - 5n(1-1)^(n-1)`
`= 0`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Find the sum 3^(n)C_(0)-8^(n)C_(1)+13^(n)C_(2)xx^(n)C_(3)+...

The sum 3 .^(n)C_(0)-8.^(n)C_(1)+13 .^(n)C_(2)-18xx.^(n)C_(3)+.... is less than

Find the sum .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "……" + n xx .^(n)C_(n) .

Find the sum ^(n)C_(0)+^(n)C_(4)+^(n)C_(8)+...

Find the sum C_(0)+3C_(1)+3^(2)C_(2)+...+3^(n)C_(n)

Find the sum : 1/2*""^(n)C_0+""^(n)C_1+2*""^(n)C_2+2^2*""^nC_3+...+2^(n-1)*""^(n)C_n .

Find the sum : ""^(2n+1)C_0+""^(2n+1)C_1+""^(2n+1)C_2+...+""^(2n+1)C_n .

Find the sum 1C_(0)+2C_(1)+3C_(2)+...+(n+1)C_(n), where C_(r)=^(n)C_(r)