Home
Class 12
MATHS
Find the sum(r =0)^(r) ""^(n(1))C((r-i))...

Find the `sum_(r =0)^(r) ""^(n_(1))C_((r-i))""^(n_(2))C_(i)`.

Text Solution

Verified by Experts

`S = underset(i=0)overset(r )sum (.^(n_(1))C_(r-i))(.^(n_(2))C_(i))`
`= "Coefficient of" x^(r ) "in"(1+x)^(n)(1+x)^(n_(2))`
`.^(n_(1)+n_(2))C_(r)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Find the sum sum_(i=0)^(r)*^(n_(1))C_(r-i).^(n_(2))C_(i)

If n in N, then sum_(r=0)^(n) (-1)^(r) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .

Evaluate : sum_(r = 1)^(n) ""^(n)C_(r) 2^r

Evaluate sum_(r=0)^(n) ""^(n+r)C_(n) .

Find the sum of sum_(r=1)^(n)(r^(n)C_(r))/(^nC_(r-1))

Find the sum sum_(r=1)^(n)r^(2)(^nC_(r))/(n_(C_(r-1)))

Statement -1: sum_(r=0)^(n) r(""^(n)C_(r))^(2) = n (""^(2n -1)C_(n-1)) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))^(2)= ""^(2n)C_(n)

Find the sum sum_(r=0)^n(-1)^r*(""^nC_r)/(""^(r+3)C_r)